期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solitary,periodic,kink wave solutions of a perturbed high-order nonlinear Schrödinger equation via bifurcation theory
1
作者 qiancheng ouyang Zaiyun Zhang +3 位作者 Qiong Wang Wenjing Ling Pengcheng Zou Xinping Li 《Propulsion and Power Research》 SCIE 2024年第3期433-444,共12页
In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables... In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables,the equation is transformed into an ordinary differential equation.Then,under the parameter conditions,we obtain the Hamiltonian system and phase portraits.Finally,traveling wave solutions which contains solitary,periodic and kink wave so-lutions are constructed by integrating along the homoclinic or heteroclinic orbits.In addition,by choosing appropriate values to parameters,different types of structures of solutions can be displayed graphically.Moreover,the computational work and it’sfigures show that this tech-nique is influential and efficient. 展开更多
关键词 Traveling wave solution High-order nonlinear Schrödinger equation Bifurcation theory Dynamical system Hamiltonian system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部