Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(...Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.展开更多
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse...CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.展开更多
Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury.However,the precise mechanism of action remains unclea r.In this study,we induced moderate trau...Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury.However,the precise mechanism of action remains unclea r.In this study,we induced moderate traumatic brain injury in mice by intrape ritoneal injection of erythro poietin for 3 consecutive days.RNA sequencing detected a total of 4065 differentially expressed RNAs,including 1059 mRNAs,92 microRNAs,799 long non-coding RNAs,and 2115circular RNAs.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed that the coding and non-coding RNAs that were differentially expressed after traumatic brain injury and treatment with erythropoietin play roles in the axon guidance pathway,Wnt pathway,and MAPK pathway.Constructing competing endogenous RNA networks showed that regulatory relationship between the differentially expressed non-coding RNAs and mRNAs.Because the axon guidance pathway was repeatedly enriched,the expression of Wnt5a and Ephb6,key factors in the axonal guidance pathway,was assessed.Ephb6 expression decreased and Wnt5a expression increased after traumatic brain injury,and these effects were reversed by treatment with erythro poietin.These findings suggest that erythro poietin can promote recove ry of nerve function after traumatic brain injury through the axon guidance pathway.展开更多
A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which ...A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which generated a trace of the target products but accumulated a large amount of shunt products.Based on rational analysis of the relevant secondary metabolism,directed engineering of the biosynthetic pathways resulted in the high production of HBM B,as well as new HBM derivates with improved antitumor activity.These results not only establish a biosynthetic system to effectively synthesize HBMs-a class of the largest and most complex Type-Ⅱpolyketides,with a unique pseudo-dimeric structure-but also set the stage for further engineering and deep investigation of this complex biosynthetic pathway toward potent anticancer drugs.展开更多
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin...As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.展开更多
Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive f...Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.展开更多
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el...By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.展开更多
Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time...Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time,data,and labor demands call for a swifter,yet precise,method.This study introduces the DuongeCNNeLSTM(D-C-L)model,which integrates a convolutional neural network(CNN)with a long short-term memory(LSTM)network and is grounded on the empirical Duong model for physical constraints.Compared to traditional approaches,the D-C-L model demonstrates superior precision,efficiency,and cost-effectiveness in predicting shale oil production.展开更多
Ultrahigh-temperature-pressure experiments are crucial for understanding the physical and chemical properties of matter.The recent development of boron-doped diamond(BDD)heaters has made such melting experiments possi...Ultrahigh-temperature-pressure experiments are crucial for understanding the physical and chemical properties of matter.The recent development of boron-doped diamond(BDD)heaters has made such melting experiments possible in large-volume presses.However,estimates of temperatures above 2600 K and of the temperature distributions inside BDD heaters are not well constrained,owing to the lack of a suitable thermometer.Here,we establish a three-dimensional finite element model as a virtual thermometer to estimate the temperature and temperature field above 2600 K.The advantage of this virtual thermometer over those proposed in previous studies is that it considers both alternating and direct current heating modes,the actual sizes of cell assemblies after compression,the effects of the electrode,thermocouple and anvil,and the heat dissipation by the pressure-transmitting medium.The virtual thermometer reproduces the power-temperature relationships of ultrahigh-temperature-pressure experiments below 2600 K at press loads of 2.8-7.9 MN(~19 to 28 GPa)within experimental uncertainties.The temperatures above 2600 K predicted by our virtual thermometer are within the uncertainty of those extrapolated from power-temperature relationships below 2600 K.Furthermore,our model shows that the temperature distribution inside a BDD heater(19-26 K/mm along the radial direction and<83 K/mm along the longitudinal direction)is more homogeneous than those inside conventional heaters such as graphite or LaCrO_(3) heaters(100-200 K/mm).Our study thus provides a reliable virtual thermometer for ultrahigh-temperature experiments using BDD heaters in Earth and material sciences.展开更多
This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the aff...This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the affiliated institution of the authors.We apologize for our unintentional mistake.Please note,these changes do not affect our results.展开更多
Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory c...Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory calculations, we demonstrated that the interfacial modulation of hexagonal boron nitride/graphene(hBN-graphene) could sufficiently improve the catalytic activity of the single transition metal atom catalysts for nitrogen reduction reaction(NRR). It was revealed that Re@hBN-graphene and Os@hBN-graphene possessed remarkable NRR catalytic activity with low limiting potentials of 0.29 V and 0.33 V, respectively. Furthermore, the mechanism of the enhanced catalytic activity was investigated based on various descriptors of the adsorption energies of intermediates, where the synergistic effect of hBN and graphene in the hybrid substrate was found to play a key role. Motivated by the synergistic effect of hybrid substrate in single-atom catalysts, a novel strategy was proposed to efficiently design dual-atom catalysts by integrating the merits of both metal components. The as-designed dual-atom catalyst Fe-Mo@hBN exhibited more excellent NRR catalytic performance with a limiting potential of 0.17 V, manifesting the solidity of the design strategy. Our findings open new avenues for the search of heterostructure substrates for single-atom catalysts and the efficient design of dualatom catalysts for NRR.展开更多
Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was construct...Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was constructed to detect QTL for thousand-grain weight(TGW),grain length(GL)and grain width(GW)across eight environments.Genomic regions associated with grain size and grain weight were identified on chromosomes 4A and 6A using bulked segregant exome sequencing(BSE-Seq)analysis.After constructing genetic maps,six major QTL detected in at least four individual environments and in best linear unbiased estimator(BLUE)datasets,explained 7.50%-23.45%of the phenotypic variation.Except for QGl.cib-4A,the other five QTL were co-located in two regions,namely QTgw/Gw.cib-4A and QTgw/Gw/Gl.cib-6A.Interactions of these QTL were analyzed.Unlike QTgw/Gw/Gl.cib-6A,QTgw/Gw.cib-4A and QGl.cib-4A had no effect on grain number per spike(GNS).The QTL were validated in a second cross using Kompetitive Allele Specific PCR(KASP)markers.Since QTgw/Gw.cib-4A was probably a novel locus,it and the KASP markers reported here can be used in wheat breeding.TraesCS4A03G0191200 was predicted to be potential candidate gene for QTgw/Gw.cib-4A based on the sequence differences,spatiotemporal expression patterns,gene annotation and haplotype analysis.Our findings will be useful for fine mapping and for marker-assisted selection in wheat grain yield improvement.展开更多
BACKGROUND Out-of-hospital cardiac arrest(OHCA)is a leading cause of death worldwide.AIM To explore factors influencing prehospital return of spontaneous circulation(P-ROSC)in patients with OHCA and develop a nomogram...BACKGROUND Out-of-hospital cardiac arrest(OHCA)is a leading cause of death worldwide.AIM To explore factors influencing prehospital return of spontaneous circulation(P-ROSC)in patients with OHCA and develop a nomogram prediction model.METHODS Clinical data of patients with OHCA in Shenzhen,China,from January 2012 to December 2019 were retrospectively analyzed.Least absolute shrinkage and selection operator(LASSO)regression and multivariate logistic regression were applied to select the optimal factors predicting P-ROSC in patients with OHCA.A nomogram prediction model was established based on these influencing factors.Discrimination and calibration were assessed using receiver operating charac-teristic(ROC)and calibration curves.Decision curve analysis(DCA)was used to evaluate the model’s clinical utility.RESULTS Among the included 2685 patients with OHCA,the P-ROSC incidence was 5.8%.LASSO and multivariate logistic regression analyses showed that age,bystander cardiopulmonary resuscitation(CPR),initial rhythm,CPR duration,ventilation mode,and pathogenesis were independent factors influencing P-ROSC in these patients.The area under the ROC was 0.963.The calibration plot demonstrated that the predicted P-ROSC model was concordant with the actual P-ROSC.The good clinical usability of the prediction model was confirmed using DCA.CONCLUSION The nomogram prediction model could effectively predict the probability of P-ROSC in patients with OHCA.展开更多
BACKGROUND:To evaluate whether a simplified self-instruction card can help potential rescue providers use automated external defibrillators(AEDs)more accurately and quickly.METHODS:From June 1,2018,to November 30,2019...BACKGROUND:To evaluate whether a simplified self-instruction card can help potential rescue providers use automated external defibrillators(AEDs)more accurately and quickly.METHODS:From June 1,2018,to November 30,2019,a prospective longitudinal randomized controlled simulation study was conducted among 165 laypeople(18–65 years old)without prior AED training.A self-instruction card was designed to illuminate key AED operation procedures.Subjects were randomly divided into the card(n=83)and control(n=82)groups with age stratification.They were then individually evaluated in the same simulated scenario to use AED with(card group)or without the self-instruction card(control group)at baseline,posttraining,and at the 3-month follow-up.RESULTS:At baseline,the card group reached a significantly higher proportion of successful defibrillation(31.1%vs.15.9%,P=0.03),fully baring the chest(88.9%vs.63.4%,P<0.001),correct electrode placement(32.5%vs.17.1%,P=0.03),and resuming cardiopulmonary resuscitation(CPR)(72.3%vs.9.8%,P<0.001).At post-training and follow-up,there were no significant differences in key behaviors,except for resuming CPR.Time to shock and time to resume CPR were shorter in the card group,while time to power-on AED was not different in each phase of tests.In the 55–65 years group,the card group achieved more skill improvements over the control group compared to the other age groups.CONCLUSION:The self-instruction card could serve as a direction for first-time AED users and as a reminder for trained subjects.This could be a practical,cost-effective way to improve the AED skills of potential rescue providers among different age groups,including seniors.展开更多
基金supported by the Major Program of National Agricultural Science and Technology of China(NK20220607)the West Light Foundation of the Chinese Academy of Sciences(2022XBZG_XBQNXZ_A_001)the Sichuan Science and Technology Program,China(2022ZDZX0014)。
文摘Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.
基金supported by the National Major Project of Research and Development,No.2022YFA1105500(to SZ)the National Natural Science Foundation of China,No.81870975(to SZ)Innovation Program for Graduate Students in Jiangsu Province of China,No.KYCX223335(to MZ)。
文摘CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases.
基金supported by the National Natural Science Foundation of China,No.81771355the Natural Science Foundation of Chongqing Science and Technology Bureau,Nos.CSTC2015jcyjA10096,cstc2021jcyj-msxmX0262(all to ZL)。
文摘Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury.However,the precise mechanism of action remains unclea r.In this study,we induced moderate traumatic brain injury in mice by intrape ritoneal injection of erythro poietin for 3 consecutive days.RNA sequencing detected a total of 4065 differentially expressed RNAs,including 1059 mRNAs,92 microRNAs,799 long non-coding RNAs,and 2115circular RNAs.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed that the coding and non-coding RNAs that were differentially expressed after traumatic brain injury and treatment with erythropoietin play roles in the axon guidance pathway,Wnt pathway,and MAPK pathway.Constructing competing endogenous RNA networks showed that regulatory relationship between the differentially expressed non-coding RNAs and mRNAs.Because the axon guidance pathway was repeatedly enriched,the expression of Wnt5a and Ephb6,key factors in the axonal guidance pathway,was assessed.Ephb6 expression decreased and Wnt5a expression increased after traumatic brain injury,and these effects were reversed by treatment with erythro poietin.These findings suggest that erythro poietin can promote recove ry of nerve function after traumatic brain injury through the axon guidance pathway.
基金supported in part by grants from the National Key Research and Development Program of China(2018YFA0901900)the National Natural Science Foundation of China(22137009)the China Postdoctoral Science Foundation(2020M671271).
文摘A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which generated a trace of the target products but accumulated a large amount of shunt products.Based on rational analysis of the relevant secondary metabolism,directed engineering of the biosynthetic pathways resulted in the high production of HBM B,as well as new HBM derivates with improved antitumor activity.These results not only establish a biosynthetic system to effectively synthesize HBMs-a class of the largest and most complex Type-Ⅱpolyketides,with a unique pseudo-dimeric structure-but also set the stage for further engineering and deep investigation of this complex biosynthetic pathway toward potent anticancer drugs.
基金supported by the Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management (Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China (Grant No.11802160)。
文摘As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.
基金National Natural Science Foundation of China(Grant No.11872120).
文摘Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.
基金the National Natural Science Foundation of China(Grant Nos.12002037 and 12141201).
文摘By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.
基金funded by the National Natural Science Foundation of China(No.51974356).
文摘Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time,data,and labor demands call for a swifter,yet precise,method.This study introduces the DuongeCNNeLSTM(D-C-L)model,which integrates a convolutional neural network(CNN)with a long short-term memory(LSTM)network and is grounded on the empirical Duong model for physical constraints.Compared to traditional approaches,the D-C-L model demonstrates superior precision,efficiency,and cost-effectiveness in predicting shale oil production.
基金supported financially by the National Key R&D Program of China(Grant No.2022YFB3706602)the National Natural Science Foundation of China(Grant Nos.42272041,41902034,and 12011530063)the Jilin University High-Level Innovation Team Foundation,China(Grant No.2021TD-05).
文摘Ultrahigh-temperature-pressure experiments are crucial for understanding the physical and chemical properties of matter.The recent development of boron-doped diamond(BDD)heaters has made such melting experiments possible in large-volume presses.However,estimates of temperatures above 2600 K and of the temperature distributions inside BDD heaters are not well constrained,owing to the lack of a suitable thermometer.Here,we establish a three-dimensional finite element model as a virtual thermometer to estimate the temperature and temperature field above 2600 K.The advantage of this virtual thermometer over those proposed in previous studies is that it considers both alternating and direct current heating modes,the actual sizes of cell assemblies after compression,the effects of the electrode,thermocouple and anvil,and the heat dissipation by the pressure-transmitting medium.The virtual thermometer reproduces the power-temperature relationships of ultrahigh-temperature-pressure experiments below 2600 K at press loads of 2.8-7.9 MN(~19 to 28 GPa)within experimental uncertainties.The temperatures above 2600 K predicted by our virtual thermometer are within the uncertainty of those extrapolated from power-temperature relationships below 2600 K.Furthermore,our model shows that the temperature distribution inside a BDD heater(19-26 K/mm along the radial direction and<83 K/mm along the longitudinal direction)is more homogeneous than those inside conventional heaters such as graphite or LaCrO_(3) heaters(100-200 K/mm).Our study thus provides a reliable virtual thermometer for ultrahigh-temperature experiments using BDD heaters in Earth and material sciences.
文摘This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the affiliated institution of the authors.We apologize for our unintentional mistake.Please note,these changes do not affect our results.
基金the financial support from the National Natural Science Foundation of China (52076045)the Ministry of Science and Technology of China (2019YFC1906700, 2018YFC1902600)the support from “Zhishan Scholar” of Southeast University。
文摘Developing efficient electrocatalysts for converting dinitrogen to ammonia through electrocatalysis is of significance to the decentralized ammonia production. Here, through high-throughput density functional theory calculations, we demonstrated that the interfacial modulation of hexagonal boron nitride/graphene(hBN-graphene) could sufficiently improve the catalytic activity of the single transition metal atom catalysts for nitrogen reduction reaction(NRR). It was revealed that Re@hBN-graphene and Os@hBN-graphene possessed remarkable NRR catalytic activity with low limiting potentials of 0.29 V and 0.33 V, respectively. Furthermore, the mechanism of the enhanced catalytic activity was investigated based on various descriptors of the adsorption energies of intermediates, where the synergistic effect of hBN and graphene in the hybrid substrate was found to play a key role. Motivated by the synergistic effect of hybrid substrate in single-atom catalysts, a novel strategy was proposed to efficiently design dual-atom catalysts by integrating the merits of both metal components. The as-designed dual-atom catalyst Fe-Mo@hBN exhibited more excellent NRR catalytic performance with a limiting potential of 0.17 V, manifesting the solidity of the design strategy. Our findings open new avenues for the search of heterostructure substrates for single-atom catalysts and the efficient design of dualatom catalysts for NRR.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24030402)Sichuan Science and Technology Program.
文摘Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was constructed to detect QTL for thousand-grain weight(TGW),grain length(GL)and grain width(GW)across eight environments.Genomic regions associated with grain size and grain weight were identified on chromosomes 4A and 6A using bulked segregant exome sequencing(BSE-Seq)analysis.After constructing genetic maps,six major QTL detected in at least four individual environments and in best linear unbiased estimator(BLUE)datasets,explained 7.50%-23.45%of the phenotypic variation.Except for QGl.cib-4A,the other five QTL were co-located in two regions,namely QTgw/Gw.cib-4A and QTgw/Gw/Gl.cib-6A.Interactions of these QTL were analyzed.Unlike QTgw/Gw/Gl.cib-6A,QTgw/Gw.cib-4A and QGl.cib-4A had no effect on grain number per spike(GNS).The QTL were validated in a second cross using Kompetitive Allele Specific PCR(KASP)markers.Since QTgw/Gw.cib-4A was probably a novel locus,it and the KASP markers reported here can be used in wheat breeding.TraesCS4A03G0191200 was predicted to be potential candidate gene for QTgw/Gw.cib-4A based on the sequence differences,spatiotemporal expression patterns,gene annotation and haplotype analysis.Our findings will be useful for fine mapping and for marker-assisted selection in wheat grain yield improvement.
文摘BACKGROUND Out-of-hospital cardiac arrest(OHCA)is a leading cause of death worldwide.AIM To explore factors influencing prehospital return of spontaneous circulation(P-ROSC)in patients with OHCA and develop a nomogram prediction model.METHODS Clinical data of patients with OHCA in Shenzhen,China,from January 2012 to December 2019 were retrospectively analyzed.Least absolute shrinkage and selection operator(LASSO)regression and multivariate logistic regression were applied to select the optimal factors predicting P-ROSC in patients with OHCA.A nomogram prediction model was established based on these influencing factors.Discrimination and calibration were assessed using receiver operating charac-teristic(ROC)and calibration curves.Decision curve analysis(DCA)was used to evaluate the model’s clinical utility.RESULTS Among the included 2685 patients with OHCA,the P-ROSC incidence was 5.8%.LASSO and multivariate logistic regression analyses showed that age,bystander cardiopulmonary resuscitation(CPR),initial rhythm,CPR duration,ventilation mode,and pathogenesis were independent factors influencing P-ROSC in these patients.The area under the ROC was 0.963.The calibration plot demonstrated that the predicted P-ROSC model was concordant with the actual P-ROSC.The good clinical usability of the prediction model was confirmed using DCA.CONCLUSION The nomogram prediction model could effectively predict the probability of P-ROSC in patients with OHCA.
基金National Natural Science Foundation of China(No.72074144)Sanming Project of Medicine in Shenzhen(No.SZSM201911005)+1 种基金Innovative Research Team of High-level Local Universities in Shanghai(No.SHSMU-ZDCX20212801)Laerdal Foundation(No.2022-0133).
文摘BACKGROUND:To evaluate whether a simplified self-instruction card can help potential rescue providers use automated external defibrillators(AEDs)more accurately and quickly.METHODS:From June 1,2018,to November 30,2019,a prospective longitudinal randomized controlled simulation study was conducted among 165 laypeople(18–65 years old)without prior AED training.A self-instruction card was designed to illuminate key AED operation procedures.Subjects were randomly divided into the card(n=83)and control(n=82)groups with age stratification.They were then individually evaluated in the same simulated scenario to use AED with(card group)or without the self-instruction card(control group)at baseline,posttraining,and at the 3-month follow-up.RESULTS:At baseline,the card group reached a significantly higher proportion of successful defibrillation(31.1%vs.15.9%,P=0.03),fully baring the chest(88.9%vs.63.4%,P<0.001),correct electrode placement(32.5%vs.17.1%,P=0.03),and resuming cardiopulmonary resuscitation(CPR)(72.3%vs.9.8%,P<0.001).At post-training and follow-up,there were no significant differences in key behaviors,except for resuming CPR.Time to shock and time to resume CPR were shorter in the card group,while time to power-on AED was not different in each phase of tests.In the 55–65 years group,the card group achieved more skill improvements over the control group compared to the other age groups.CONCLUSION:The self-instruction card could serve as a direction for first-time AED users and as a reminder for trained subjects.This could be a practical,cost-effective way to improve the AED skills of potential rescue providers among different age groups,including seniors.