A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achievin...A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.展开更多
BACKGROUND Inflammatory bowel disease,particularly Crohn’s disease(CD),has been associated with alterations in mesenteric adipose tissue(MAT)and the phenomenon termed“creeping fat”.Histopathological evaluations sho...BACKGROUND Inflammatory bowel disease,particularly Crohn’s disease(CD),has been associated with alterations in mesenteric adipose tissue(MAT)and the phenomenon termed“creeping fat”.Histopathological evaluations showed that MAT and intestinal tissues were significantly altered in patients with CD,with these tissues characterized by inflammation and fibrosis.AIM To evaluate the complex interplay among MAT,creeping fat,inflammation,and gut microbiota in CD.METHODS Intestinal tissue and MAT were collected from 12 patients with CD.Histological manifestations and protein expression levels were analyzed to determine lesion characteristics.Fecal samples were collected from five recently treated CD patients and five control subjects and transplanted into mice.The intestinal and mesenteric lesions in these mice,as well as their systemic inflammatory status,were assessed and compared in mice transplanted with fecal samples from CD patients and control subjects.RESULTS Pathological examination of MAT showed significant differences between CDaffected and unaffected colons,including significant differences in gut microbiota structure.Fetal microbiota transplantation(FMT)from clinically healthy donors into mice with 2,4,6-trinitrobenzene sulfonic acid(TNBS)-induced CD ameliorated CD symptoms,whereas FMT from CD patients into these mice exacerbated CD symptoms.Notably,FMT influenced intestinal permeability,barrier function,and levels of proinflammatory factors and adipokines.Furthermore,FMT from CD patients intensified fibrotic changes in the colon tissues of mice with TNBS-induced CD.CONCLUSION Gut microbiota play a critical role in the histopathology of CD.Targeting MAT and creeping fat may therefore have potential in the treatment of patients with CD.展开更多
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev...Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.展开更多
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compressio...To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.展开更多
Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperce...Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI).展开更多
Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferio...Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
BACKGROUND Myocardial infarction(MI)is a critical cardiovascular event with multifaceted etiology,involving several genetic and environmental factors.It is essential to understand the function of plasma metabolites in...BACKGROUND Myocardial infarction(MI)is a critical cardiovascular event with multifaceted etiology,involving several genetic and environmental factors.It is essential to understand the function of plasma metabolites in the development of MI and unravel its complex pathogenesis.METHODS This study employed a bidirectional Mendelian randomization(MR)approach to investigate the causal relationships between plasma metabolites and MI risk.We used genetic instruments as proxies for plasma metabolites and MI and conducted MR analyses in both directions to assess the impact of metabolites on MI risk and vice versa.In addition,the large-scale genome-wide association studies datasets was used to identify genetic variants associated with plasma metabolite(1400 metabolites)and MI(20,917 individuals with MI and 440,906 individuals without MI)susceptibility.Inverse variance weighted was the primary method for estimating causal effects.MR estimates are expressed as beta coefficients or odds ratio(OR)with 95%CI.RESULTS We identified 14 plasma metabolites associated with the occurrence of MI(P<0.05),among which 8 plasma metabolites[propionylglycine levels(OR=0.922,95%CI:0.881–0.965,P<0.001),gamma-glutamylglycine levels(OR=0.903,95%CI:0.861–0.948,P<0.001),hexadecanedioate(C16-DC)levels(OR=0.941,95%CI:0.911–0.973,P<0.001),pentose acid levels(OR=0.923,95%CI:0.877–0.972,P=0.002),X-24546 levels(OR=0.936,95%CI:0.902–0.971,P<0.001),glycine levels(OR=0.936,95%CI:0.909–0.964,P<0.001),glycine to serine ratio(OR=0.930,95%CI:0.888–0.974,P=0.002),and mannose to trans-4-hydroxyproline ratio(OR=0.912,95%CI:0.869–0.958,P<0.001)]were correlated with a decreased risk of MI,whereas the remaining 6 plasma metabolites[1-palmitoyl-2-arachidonoyl-GPE(16:0/20:4)levels(OR=1.051,95%CI:1.018–1.084,P=0.002),behenoyl dihydrosphingomyelin(d18:0/22:0)levels(OR=1.076,95%CI:1.027–1.128,P=0.002),1-stearoyl-2-docosahexaenoyl-GPE(18:0/22:6)levels(OR=1.067,95%CI:1.027–1.109,P=0.001),alpha-ketobutyrate levels(OR=1.108,95%CI:1.041–1.180,P=0.001),5-acetylamino-6-formylamino-3-methyluracil levels(OR=1.047,95%CI:1.019–1.076,P<0.001),and N-acetylputrescine to(N(1)+N(8))-acetylspermidine ratio(OR=1.045,95%CI:1.018–1.073,P<0.001)]were associated with an increased risk of MI.Furthermore,we also observed that the mentioned relationships were unaffected by horizontal pleiotropy(P>0.05).On the contrary,MI did not lead to significant alterations in the levels of the aforementioned 14 plasma metabolites(P>0.05 for each comparison).CONCLUSIONS Our bidirectional MR study identified 14 plasma metabolites associated with the occurrence of MI,among which 13 plasma metabolites have not been reported previously.These findings provide valuable insights for the early diagnosis of MI and potential therapeutic targets.展开更多
We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction.Our experimental results demonstrate the feasibility of the method for simultaneously identifying t...We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction.Our experimental results demonstrate the feasibility of the method for simultaneously identifying the phase and temperature of fragments through analysis of the diffraction pattern.Surprisingly,we observe a deviation from the widely accepted isentropic release assumption,with the temperature of the fragments being found to be more than 100 K higher than expected,owing to the release of plastic work during dynamic fragmentation.Our findings are further verified through extensive large-scale molecular dynamics simulations,in which strain energies are found to be transferred into thermal energies during the nucleation and growth of voids,leading to an increase in temperature.Our findings thus provide crucial insights into the impact-driven dynamic fragmentation phenomenon and reveal the significant influence of plastic work on material response during shock release.展开更多
Reservoir islands formed by dam construction have the same history,clear boundaries,and large numbers that provide a natural platform for testing theories in ecology and biogeography.In this paper,we review studies of...Reservoir islands formed by dam construction have the same history,clear boundaries,and large numbers that provide a natural platform for testing theories in ecology and biogeography.In this paper,we review studies of multiple zoological taxa on reservoir islands of a large lake in eastern China(Thousand Island Lake).This lake,created in 1959,has 1078 artificial land-bridge islands of varying areas and isolation.Our review summarizes the decades-long studies in island biogeography and habitat fragmentation from this island system,grouped into three topics:species richness(“how many species are there”),community structure(“who are they”),and species interaction(“how they interact with each other”).Our findings support the predictions of the Equilibrium Theory of Island Biogeography and extend this theory to predict community structure of island faunas by moving beyond assumptions of species equivalency.In addition,the extensive studies on ecological networks,including mutualistic,antagonistic,and parasitic interactions,reveal the negative impacts of habitat loss on the maintenance of such networks,even as increasing forest edge enhances the robustness of pollination networks.At the end of this review,we proposed several future research directions based on current studies that are simultaneously at the frontier of ecology and biogeography.展开更多
Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tol...Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tolerance but always incurs interfacial degradation and electrolyte decomposition.Herein,an EC-free electrolyte is deliberately developed based on gradient solvation by pairing solvation-protection agent(1,3,5-trifluorobenzene,F_(3)B)with propylene carbonate(PC)/methyl ethyl carbonate(EMC)formulation.F_(3)B keeps out of inner coordination shell but decomposes preferentially to construct robust interphase,inhibiting solvent decomposition and electrode corrosion.Thereby,the optimized electrolyte(1.1 M)with wide liquid range(-70–77℃)conveys decent interfacial compatibility and high-voltage stability(4.6 V for LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2),NCM622),qualifying reliable operation of practical NCM/graphite pouch cell(81.1%capacity retention over 600 cycles at 0.5 C).The solvation preservation and interface protection from F_(3)B blaze a new avenue for developing high-voltage electrolytes in next-generation LIBs.展开更多
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr...Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.展开更多
High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle ...High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries.展开更多
Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk asse...Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk assessment of heavy metal(loid)s driven by the wide distribution of metal ore processing,mining,and smelting factories in Hexigten Banner and Bairin Left Banner.We conducted surveys to assess the levels of heavy metal(loid)s(Cr,As,Pb,Cd,and Hg)in the topsoil and groundwater of the areas.The results indicated that the concentrations of As,Cd,and Pb in partial soil samples exceeded the environmental quality standards of Grade II.Based on contamination assessments,such as geoaccumulation indices and pollution indices,we inferred that Cd,Pb,and As were primary pollutants in topsoil.Potential ecological risks when considered as part of the average risk indices(RI)are up to 1626.40 and 2818.76,respectively,in the two areas.Comparative analysis revealed that Cd posed a very high potential ecological risk,followed by As.Moreover,the evaluation showed that the three exposure pathways of carcinogenic and non-carcinogenic risk followed a descending order:inhalation>ingestion>dermal contact,except for Pb.Arsenic in topsoil posed a potential non-carcinogenic risk to human health,while there were no adverse efects of As in groundwater.In addition,the average total carcinogenic risk for As in the two areas,as well as the risk of Pb in the topsoil of Bairin Left Banner and all the fve heavy metal(loid)s in groundwater,exceeded human tolerance.Pb–Zn mines caused higher human health risks.In addition,the tandem contamination of heavy metal(loid)s in soil and groundwater was not obvious.This research study provides a basis for pollution remediation to control heavy industry-induced ecological and health risks of heavy metal(loid)s.展开更多
The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to tr...The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to trace whether the satellite has been deliberately attacked.It is of great significance in both civil and military aspects.The study of satellite breakup behaviors and model is reviewed to summarize the research progress and insufficiency in recent decades,including the satellite breakup experiment,measurement and characterization of fragments,distribution characteristics of breakup fragments,satellite breakup model,etc.The classical studies are introduced in detail,and the limitations of the current research are pointed out.According to the current research results,the contemporary challenges and future directions for satellite breakup study are presented.The research on satellite breakup is developing in two directions:the miniaturization of satellite size and the complexity of satellite component.The study on satellite breakup needs to be explored and deepened on improving the experimental launch speed,expanding the model application range and breakup revealing the results under combined effect of impact and explosion.展开更多
Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum ad...Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum adsorbent location for Li atoms is the center of the seven-membered ring of pha-graphene.The binding energy of Li-decorated phagraphene is larger than the cohesive energy of Li atoms,implying that Li can be distributed on the surface of pha-graphene without forming metal clusters.We fitted the force field parameters of Li and C atoms at different positions and performed GCMCs to study the absorption capacity of H_(2).The capacity of hydrogen storage was studied by the differing density of Li decoration.The maximum hydrogen storage capacity of 4Li-decorated pha-graphene was 15.88 wt%at 77 K and100 bar.The enthalpy values of adsorption at the three densities are in the ideal range of 15 kJ·mol^(-1)-25 kJ·mol^(-1).The GCMC results at different pressures and temperatures show that with the increase in Li decorative density,the hydrogen storage gravimetric ratio of pha-graphene decreases but can reach the 2025 US Department of Energy's standard(5.5 wt%).Therefore,pha-graphene is considered to be a potential hydrogen storage material.展开更多
A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing perfo...A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.展开更多
基金supported by the National Key Research and Development Program of China(2021YFC2902004)the National Natural Science Foundation of China(42072284,42027801,and 41877186).
文摘A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.
基金Supported by the National Natural Science Foundation of China,No.82270590.
文摘BACKGROUND Inflammatory bowel disease,particularly Crohn’s disease(CD),has been associated with alterations in mesenteric adipose tissue(MAT)and the phenomenon termed“creeping fat”.Histopathological evaluations showed that MAT and intestinal tissues were significantly altered in patients with CD,with these tissues characterized by inflammation and fibrosis.AIM To evaluate the complex interplay among MAT,creeping fat,inflammation,and gut microbiota in CD.METHODS Intestinal tissue and MAT were collected from 12 patients with CD.Histological manifestations and protein expression levels were analyzed to determine lesion characteristics.Fecal samples were collected from five recently treated CD patients and five control subjects and transplanted into mice.The intestinal and mesenteric lesions in these mice,as well as their systemic inflammatory status,were assessed and compared in mice transplanted with fecal samples from CD patients and control subjects.RESULTS Pathological examination of MAT showed significant differences between CDaffected and unaffected colons,including significant differences in gut microbiota structure.Fetal microbiota transplantation(FMT)from clinically healthy donors into mice with 2,4,6-trinitrobenzene sulfonic acid(TNBS)-induced CD ameliorated CD symptoms,whereas FMT from CD patients into these mice exacerbated CD symptoms.Notably,FMT influenced intestinal permeability,barrier function,and levels of proinflammatory factors and adipokines.Furthermore,FMT from CD patients intensified fibrotic changes in the colon tissues of mice with TNBS-induced CD.CONCLUSION Gut microbiota play a critical role in the histopathology of CD.Targeting MAT and creeping fat may therefore have potential in the treatment of patients with CD.
基金supported by the National Natural Science Foundation of China(Nos.52275565,52105593,and 62104155)the Natural Science Foundation of Guangdong Province,China(No.2022A1515011667)+2 种基金the Shenzhen Foundation Research Key Project(No.JCYJ20200109114244249)the Youth Talent Fund of Guangdong Province,China(No.2023A1515030292)the Shenzhen Excellent Youth Basic Research Fund(No.RCYX20231211090249068).
文摘Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.
基金National Natural Science Foundation Joint Fund Project(U21A20111)National Natural Science Foundation of China(51974112,51674108).
文摘To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.
基金supported by the National Natural Science Foundation of China(No.52271241 and 52071282)the Applied Basic Research Key Project of Yunnan(202001BB050046)the National Training Programs of Innovation and Entrepreneurship for Undergraduates(No.202210673068 and 202210673002).
文摘Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI).
基金supported by the National Natural Science Foundation of China(Nos.21975087,22008082)。
文摘Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金supported by the Guangxi Natural Science Foundation(No.2020GXNSFDA238007)the Key Research and Development Program of Guangxi(No.2023AB22024)the Chongzuo Science and Technology Bureau Planning Project(No.FA2018026)。
文摘BACKGROUND Myocardial infarction(MI)is a critical cardiovascular event with multifaceted etiology,involving several genetic and environmental factors.It is essential to understand the function of plasma metabolites in the development of MI and unravel its complex pathogenesis.METHODS This study employed a bidirectional Mendelian randomization(MR)approach to investigate the causal relationships between plasma metabolites and MI risk.We used genetic instruments as proxies for plasma metabolites and MI and conducted MR analyses in both directions to assess the impact of metabolites on MI risk and vice versa.In addition,the large-scale genome-wide association studies datasets was used to identify genetic variants associated with plasma metabolite(1400 metabolites)and MI(20,917 individuals with MI and 440,906 individuals without MI)susceptibility.Inverse variance weighted was the primary method for estimating causal effects.MR estimates are expressed as beta coefficients or odds ratio(OR)with 95%CI.RESULTS We identified 14 plasma metabolites associated with the occurrence of MI(P<0.05),among which 8 plasma metabolites[propionylglycine levels(OR=0.922,95%CI:0.881–0.965,P<0.001),gamma-glutamylglycine levels(OR=0.903,95%CI:0.861–0.948,P<0.001),hexadecanedioate(C16-DC)levels(OR=0.941,95%CI:0.911–0.973,P<0.001),pentose acid levels(OR=0.923,95%CI:0.877–0.972,P=0.002),X-24546 levels(OR=0.936,95%CI:0.902–0.971,P<0.001),glycine levels(OR=0.936,95%CI:0.909–0.964,P<0.001),glycine to serine ratio(OR=0.930,95%CI:0.888–0.974,P=0.002),and mannose to trans-4-hydroxyproline ratio(OR=0.912,95%CI:0.869–0.958,P<0.001)]were correlated with a decreased risk of MI,whereas the remaining 6 plasma metabolites[1-palmitoyl-2-arachidonoyl-GPE(16:0/20:4)levels(OR=1.051,95%CI:1.018–1.084,P=0.002),behenoyl dihydrosphingomyelin(d18:0/22:0)levels(OR=1.076,95%CI:1.027–1.128,P=0.002),1-stearoyl-2-docosahexaenoyl-GPE(18:0/22:6)levels(OR=1.067,95%CI:1.027–1.109,P=0.001),alpha-ketobutyrate levels(OR=1.108,95%CI:1.041–1.180,P=0.001),5-acetylamino-6-formylamino-3-methyluracil levels(OR=1.047,95%CI:1.019–1.076,P<0.001),and N-acetylputrescine to(N(1)+N(8))-acetylspermidine ratio(OR=1.045,95%CI:1.018–1.073,P<0.001)]were associated with an increased risk of MI.Furthermore,we also observed that the mentioned relationships were unaffected by horizontal pleiotropy(P>0.05).On the contrary,MI did not lead to significant alterations in the levels of the aforementioned 14 plasma metabolites(P>0.05 for each comparison).CONCLUSIONS Our bidirectional MR study identified 14 plasma metabolites associated with the occurrence of MI,among which 13 plasma metabolites have not been reported previously.These findings provide valuable insights for the early diagnosis of MI and potential therapeutic targets.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12072331,11902308,and 12274383)the CEAP Foundation(Grant Nos.CX20210012 and CX2019002).
文摘We present a novel method for investigating laser-driven dynamic fragmentation in tin using in situ X-ray diffraction.Our experimental results demonstrate the feasibility of the method for simultaneously identifying the phase and temperature of fragments through analysis of the diffraction pattern.Surprisingly,we observe a deviation from the widely accepted isentropic release assumption,with the temperature of the fragments being found to be more than 100 K higher than expected,owing to the release of plastic work during dynamic fragmentation.Our findings are further verified through extensive large-scale molecular dynamics simulations,in which strain energies are found to be transferred into thermal energies during the nucleation and growth of voids,leading to an increase in temperature.Our findings thus provide crucial insights into the impact-driven dynamic fragmentation phenomenon and reveal the significant influence of plastic work on material response during shock release.
基金supported by National Natural Science Foundation of China(32030066,32071545,32371590,32301330,32001124,32101268,32101278)。
文摘Reservoir islands formed by dam construction have the same history,clear boundaries,and large numbers that provide a natural platform for testing theories in ecology and biogeography.In this paper,we review studies of multiple zoological taxa on reservoir islands of a large lake in eastern China(Thousand Island Lake).This lake,created in 1959,has 1078 artificial land-bridge islands of varying areas and isolation.Our review summarizes the decades-long studies in island biogeography and habitat fragmentation from this island system,grouped into three topics:species richness(“how many species are there”),community structure(“who are they”),and species interaction(“how they interact with each other”).Our findings support the predictions of the Equilibrium Theory of Island Biogeography and extend this theory to predict community structure of island faunas by moving beyond assumptions of species equivalency.In addition,the extensive studies on ecological networks,including mutualistic,antagonistic,and parasitic interactions,reveal the negative impacts of habitat loss on the maintenance of such networks,even as increasing forest edge enhances the robustness of pollination networks.At the end of this review,we proposed several future research directions based on current studies that are simultaneously at the frontier of ecology and biogeography.
基金supported by the National Key Research and Development Program of China(No.2022YFB2404800)。
文摘Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tolerance but always incurs interfacial degradation and electrolyte decomposition.Herein,an EC-free electrolyte is deliberately developed based on gradient solvation by pairing solvation-protection agent(1,3,5-trifluorobenzene,F_(3)B)with propylene carbonate(PC)/methyl ethyl carbonate(EMC)formulation.F_(3)B keeps out of inner coordination shell but decomposes preferentially to construct robust interphase,inhibiting solvent decomposition and electrode corrosion.Thereby,the optimized electrolyte(1.1 M)with wide liquid range(-70–77℃)conveys decent interfacial compatibility and high-voltage stability(4.6 V for LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2),NCM622),qualifying reliable operation of practical NCM/graphite pouch cell(81.1%capacity retention over 600 cycles at 0.5 C).The solvation preservation and interface protection from F_(3)B blaze a new avenue for developing high-voltage electrolytes in next-generation LIBs.
基金the support from the NSFC (22209131, 22005121, 21875182, and 52173023)National Key Research and Development Program of China (2022YFE0132400)+4 种基金Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002)111 project 2.0 (BP0618008)Open Fund of Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications (Changzhou University, GDRGCS2022002)Open Fund of Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (Jiangxi Normal University, KFSEMC-202201)acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231
文摘Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.
基金supported by the National Natural Sci-ence Foundation of China(Nos.21975087,U1966214)the Certificate of China Postdoctoral Science Foundation Grant(2020M672337).
文摘High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries.
基金the National Natural Science Foundation of China(No.42072284,No.42027801,No.41877186)the National Key R&D Program of China(2021YFC2902004)+1 种基金the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0020-4)the Fundamental Research Funds for the Central Universities(2022YQSH01,2020YJSSH01,2021YJSSH01)。
文摘Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk assessment of heavy metal(loid)s driven by the wide distribution of metal ore processing,mining,and smelting factories in Hexigten Banner and Bairin Left Banner.We conducted surveys to assess the levels of heavy metal(loid)s(Cr,As,Pb,Cd,and Hg)in the topsoil and groundwater of the areas.The results indicated that the concentrations of As,Cd,and Pb in partial soil samples exceeded the environmental quality standards of Grade II.Based on contamination assessments,such as geoaccumulation indices and pollution indices,we inferred that Cd,Pb,and As were primary pollutants in topsoil.Potential ecological risks when considered as part of the average risk indices(RI)are up to 1626.40 and 2818.76,respectively,in the two areas.Comparative analysis revealed that Cd posed a very high potential ecological risk,followed by As.Moreover,the evaluation showed that the three exposure pathways of carcinogenic and non-carcinogenic risk followed a descending order:inhalation>ingestion>dermal contact,except for Pb.Arsenic in topsoil posed a potential non-carcinogenic risk to human health,while there were no adverse efects of As in groundwater.In addition,the average total carcinogenic risk for As in the two areas,as well as the risk of Pb in the topsoil of Bairin Left Banner and all the fve heavy metal(loid)s in groundwater,exceeded human tolerance.Pb–Zn mines caused higher human health risks.In addition,the tandem contamination of heavy metal(loid)s in soil and groundwater was not obvious.This research study provides a basis for pollution remediation to control heavy industry-induced ecological and health risks of heavy metal(loid)s.
基金supported by National Defense Science and Technology Program(A14007)China National Space Administration Preliminary Research Project(KJSP2020020101,KJSP2020010304)。
文摘The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to trace whether the satellite has been deliberately attacked.It is of great significance in both civil and military aspects.The study of satellite breakup behaviors and model is reviewed to summarize the research progress and insufficiency in recent decades,including the satellite breakup experiment,measurement and characterization of fragments,distribution characteristics of breakup fragments,satellite breakup model,etc.The classical studies are introduced in detail,and the limitations of the current research are pointed out.According to the current research results,the contemporary challenges and future directions for satellite breakup study are presented.The research on satellite breakup is developing in two directions:the miniaturization of satellite size and the complexity of satellite component.The study on satellite breakup needs to be explored and deepened on improving the experimental launch speed,expanding the model application range and breakup revealing the results under combined effect of impact and explosion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904175,11804169,and 11804165)the Graduate Innovation Project of Jiangsu Province,China(Grant No.KYCX210700)。
文摘Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum adsorbent location for Li atoms is the center of the seven-membered ring of pha-graphene.The binding energy of Li-decorated phagraphene is larger than the cohesive energy of Li atoms,implying that Li can be distributed on the surface of pha-graphene without forming metal clusters.We fitted the force field parameters of Li and C atoms at different positions and performed GCMCs to study the absorption capacity of H_(2).The capacity of hydrogen storage was studied by the differing density of Li decoration.The maximum hydrogen storage capacity of 4Li-decorated pha-graphene was 15.88 wt%at 77 K and100 bar.The enthalpy values of adsorption at the three densities are in the ideal range of 15 kJ·mol^(-1)-25 kJ·mol^(-1).The GCMC results at different pressures and temperatures show that with the increase in Li decorative density,the hydrogen storage gravimetric ratio of pha-graphene decreases but can reach the 2025 US Department of Energy's standard(5.5 wt%).Therefore,pha-graphene is considered to be a potential hydrogen storage material.
基金the National Natural Science Foundation of China(Grant No.61935007).
文摘A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.