Based on the covariant Lagrangian function and Euler-Lagrange equation,a set of classical fluid equations for strong EM wave-spin plasma interaction is derived.Analysis shows that the relativistic effects may affect t...Based on the covariant Lagrangian function and Euler-Lagrange equation,a set of classical fluid equations for strong EM wave-spin plasma interaction is derived.Analysis shows that the relativistic effects may affect the interaction processes by three factors:the relativistic factor,the time component of four-spin,and the velocity-field coupling.This set of equations can be used to discuss the collective spin effects of relativistic electrons in classical regime,such as astrophysics,high-energy laser-plasma systems and so on.As an example,the spin induced ponderomotive force in the interaction of strong EM wave and magnetized plasma is investigated.Results show that the time component of four-spin,which approaches to zero in nonrelativistic situations,can increase the spin-ponderomotive force obviously in relativistic situation.展开更多
Lithium-rich antiperovskites are promising solid-state electrolytes for all-solid-state lithium-ion batteries because of their high structural tolerance and good formability.However,the experimentally reported proton-...Lithium-rich antiperovskites are promising solid-state electrolytes for all-solid-state lithium-ion batteries because of their high structural tolerance and good formability.However,the experimentally reported proton-free Li_(3)OCl is plagued by its inferior interfacial compatibility and harsh synthesis conditions.In contrast,Li_(2)OHCl is a thermodynamically favored phases and is easier to achieve than Li_(3)OCl.Due to the proton inside this material,it exhibits interesting lithium diffusion mechanisms.Herein,we present a systematic investigation of the ionic transport,phase stability,and electrochemicalchemical stability of Li_(2)OHCl using first-principles calculations.Our results indicate that Li_(2)OHCl is thermodynamically metastable and is an electronic insulator.The wide electrochemical stability window and high chemical stability of Li_(2)OHCl against various electrodes are confirmed.The charged defects are the dominant conduction mechanism for Li-transport,with a low energy barrier of~0.50 eV.The Li-ion conductivity estimated by ab initio molecular dynamics simulations is about 1.3×10^(-4) S cm^(-1) at room temperature.This work identifies the origin of the high interfacial stability and ionic conductivity of Li_(2)OHCl,which can further lead to the design of such as a cathode coating.Moreover,all computational methods for calculating the properties of Li_(2)OHCl are general and can guide the design of highperformance solid-state electrolytes.展开更多
基金supported by National Natural Science Foundation of China(No.12065011)Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ170642)。
文摘Based on the covariant Lagrangian function and Euler-Lagrange equation,a set of classical fluid equations for strong EM wave-spin plasma interaction is derived.Analysis shows that the relativistic effects may affect the interaction processes by three factors:the relativistic factor,the time component of four-spin,and the velocity-field coupling.This set of equations can be used to discuss the collective spin effects of relativistic electrons in classical regime,such as astrophysics,high-energy laser-plasma systems and so on.As an example,the spin induced ponderomotive force in the interaction of strong EM wave and magnetized plasma is investigated.Results show that the time component of four-spin,which approaches to zero in nonrelativistic situations,can increase the spin-ponderomotive force obviously in relativistic situation.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant No.12004145)+2 种基金the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ201030)the PhD Start-up Fund of Natural Science Foundation of Jinggangshan University(Grant No.JZB2013)supported by the Faraday Institution(grant No.FIRG017).
文摘Lithium-rich antiperovskites are promising solid-state electrolytes for all-solid-state lithium-ion batteries because of their high structural tolerance and good formability.However,the experimentally reported proton-free Li_(3)OCl is plagued by its inferior interfacial compatibility and harsh synthesis conditions.In contrast,Li_(2)OHCl is a thermodynamically favored phases and is easier to achieve than Li_(3)OCl.Due to the proton inside this material,it exhibits interesting lithium diffusion mechanisms.Herein,we present a systematic investigation of the ionic transport,phase stability,and electrochemicalchemical stability of Li_(2)OHCl using first-principles calculations.Our results indicate that Li_(2)OHCl is thermodynamically metastable and is an electronic insulator.The wide electrochemical stability window and high chemical stability of Li_(2)OHCl against various electrodes are confirmed.The charged defects are the dominant conduction mechanism for Li-transport,with a low energy barrier of~0.50 eV.The Li-ion conductivity estimated by ab initio molecular dynamics simulations is about 1.3×10^(-4) S cm^(-1) at room temperature.This work identifies the origin of the high interfacial stability and ionic conductivity of Li_(2)OHCl,which can further lead to the design of such as a cathode coating.Moreover,all computational methods for calculating the properties of Li_(2)OHCl are general and can guide the design of highperformance solid-state electrolytes.