Directional fluid transport is of significan</span><span style="font-family:Verdana;">ce</span><span style="font-family:Verdana;"> to many physical processes in nature. How ...Directional fluid transport is of significan</span><span style="font-family:Verdana;">ce</span><span style="font-family:Verdana;"> to many physical processes in nature. How to manipulate this process by man-made material is still a key challenge to scientists. In this study, Janus fabric was constructed by electrospinning a layer of polyvinylidene fluoride (PVDF) nanofibers on woven cotton or gauze. The chemical composition, morphology and surface wettability of two sides of Janus fabric were characterized by infrared spectroscopy, scanning electron microscope (SEM) and contact angle measurement. By controlling the PVDF electrospinning time, the maximum hydrostatic pressure of Janus fabric with different PVDF thickness was measured. It was found that PVDF/gauze is more favorable for unidirectional water transportation, and the moisture also can transfer from hydrophobic side to hydrophilic side. With the advantages of facile preparation, low-cost and one-way water/moisture transportation, the Janus fabric prepared in this study can be applied for water separation, humidity transfer and water collection from the air.展开更多
文摘Directional fluid transport is of significan</span><span style="font-family:Verdana;">ce</span><span style="font-family:Verdana;"> to many physical processes in nature. How to manipulate this process by man-made material is still a key challenge to scientists. In this study, Janus fabric was constructed by electrospinning a layer of polyvinylidene fluoride (PVDF) nanofibers on woven cotton or gauze. The chemical composition, morphology and surface wettability of two sides of Janus fabric were characterized by infrared spectroscopy, scanning electron microscope (SEM) and contact angle measurement. By controlling the PVDF electrospinning time, the maximum hydrostatic pressure of Janus fabric with different PVDF thickness was measured. It was found that PVDF/gauze is more favorable for unidirectional water transportation, and the moisture also can transfer from hydrophobic side to hydrophilic side. With the advantages of facile preparation, low-cost and one-way water/moisture transportation, the Janus fabric prepared in this study can be applied for water separation, humidity transfer and water collection from the air.