Peeling-off phenomena in FRP strengthened concrete beams are investigated in this paper. Based on the beam theory and the fracture mechanics, a new theoretical model is proposed to analyze the peeling-off behavior nea...Peeling-off phenomena in FRP strengthened concrete beams are investigated in this paper. Based on the beam theory and the fracture mechanics, a new theoretical model is proposed to analyze the peeling-off behavior near FRP-concrete interfaces, which is governed by residual thermal stresses. Numerical examples are presented to provide a clear insight into the failure mechanism. Some suggestions are provided for the optimal design of FRP strengthened structures.展开更多
Studies of displacement fields and stress concentration, due to uniform temperature change in a functionally gradient material (FGM) specimen and bimaterial (NFGM) specimen, have been made by Moire interferometry and ...Studies of displacement fields and stress concentration, due to uniform temperature change in a functionally gradient material (FGM) specimen and bimaterial (NFGM) specimen, have been made by Moire interferometry and finite element method. Results show that the thermal stresses concentration has been effectively reduced, and the distribution of the thermal deformations and thermal strains have also been relaxed and improved by transition layer of FGM.展开更多
基金supported by the National Basic Research Program of China(No.2007CB714102)the National Natural Science Foundation of China(No.50979048)
文摘Peeling-off phenomena in FRP strengthened concrete beams are investigated in this paper. Based on the beam theory and the fracture mechanics, a new theoretical model is proposed to analyze the peeling-off behavior near FRP-concrete interfaces, which is governed by residual thermal stresses. Numerical examples are presented to provide a clear insight into the failure mechanism. Some suggestions are provided for the optimal design of FRP strengthened structures.
文摘Studies of displacement fields and stress concentration, due to uniform temperature change in a functionally gradient material (FGM) specimen and bimaterial (NFGM) specimen, have been made by Moire interferometry and finite element method. Results show that the thermal stresses concentration has been effectively reduced, and the distribution of the thermal deformations and thermal strains have also been relaxed and improved by transition layer of FGM.