Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a...Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a porous carbon(PC)of unimodal super-micropore(micro-PC)is realized.Such precise single-molecule confinement enables sufficient activity center exposure and maximum electron-transfer from micro-PC to POM,which well stabilizes the electron-accepting molecules and thoroughly activates its inherent multi-electron redox-activity.In particular,the redox-activities and electron-accepting properties of the confined POM molecule are revealed to be super-micropore pore size-dependent by experiment and spectroscopy as well as theoretical calculation.Meanwhile,the molecularly dispersed POM molecules confined steadily in the“cage”of micro-PC exhibit unprecedented large-negative-potential stability and multiple-peak redox-activity at an ultra-low loading of~11.4 wt%.As a result,the fabricated solid-state supercapacitor achieves a remarkable areal capacitance,ultrahigh energy and power density of 443 mF cm^(-2),0.12 mWh cm^(-2)and 21.1 mW cm^(-2),respectively.This work establishes a novel strategy for the precise confinement of single POM molecule,providing a versatile approach to inducing the intrinsic activity of POMs for advanced energy-storage systems.展开更多
Alcoholic liver disease(ALD)is the most frequent liver disease worldwide,resulting in severe harm to personal health and posing a serious burden to public health.Based on the reported antioxidant and anti-inflammatory...Alcoholic liver disease(ALD)is the most frequent liver disease worldwide,resulting in severe harm to personal health and posing a serious burden to public health.Based on the reported antioxidant and anti-inflammatory capacities of scutellarin(SCU),this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration(10,25,and 50 mg/kg).The results indicated that SCU could lessen serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)levels and improve the histopathological changes in acute alcoholic liver;it reduced alcohol-induced malondialdehyde(MDA)content and increased glutathione peroxidase(GSH-Px),catalase(CAT),and superoxide dismutase(SOD)activity.Furthermore,SCU decreased tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and IL-1βmessenger RNA(mRNA)expression levels,weakened inducible nitric oxide synthase(iNOS)activity,and inhibited nucleotide-binding oligomerization domain(NOD)-like receptor protein 3(NLRP3)inflammasome activation.Mechanistically,SCU suppressed cytochrome P450 family 2 subfamily E member 1(CYP2E1)upregulation triggered by alcohol,increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2(Nrf2)and heme oxygenase-1(HO-1)pathways,and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB(NF-κB)-α(IκBα)as well as activation of NF-κB by mediating the protein kinase B(AKT)and p38 mitogen-activated protein kinase(MAPK)pathways.These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT,p38 MAPK/NF-κB pathways.展开更多
1.Introduction Additive manufacturing or 3D printing outweighs conventional casting methods in the aspect of complex parts fabrication,which can realize one-step formation without the need of complicated cast dies.3D ...1.Introduction Additive manufacturing or 3D printing outweighs conventional casting methods in the aspect of complex parts fabrication,which can realize one-step formation without the need of complicated cast dies.3D printing significantly promotes industrial production for making near-net shaped components.However,this promising technique is not always ideally applicable for metals and alloys.For example,titanium alloys prepared by 3D printing often suf-fer from poor plasticity,and usually require further complex heat treatment or hot isostatic pressing treatment,in order to remove internal stress and regulate plasticity and strength[1,2],which de-feats the original intention of employing additive manufacturing.One of the fundamental causes for such issues is the low fluidity of the alloys upon melting,leading to great chemical heterogeneity,high porosity content and residual stresses.This limitation hinders further design and fabrication of high-performance printable alloys from large scale production and application.展开更多
Drinking culture has high significance in both China and the world,whether in the entertainment sector or in social occasions;according to the World Health Organization's 2018 Global Alcohol and Health Report,abou...Drinking culture has high significance in both China and the world,whether in the entertainment sector or in social occasions;according to the World Health Organization's 2018 Global Alcohol and Health Report,about 3 million people died from excessive drinking in 2016,accounting for 5.3%of the total global deaths that year.Oxidative stress and inflammation are the most common pathological phenomena caused by alcohol abuse(Snyder et al.,2017).展开更多
基金the National Natural Science Foundation of China(No.51902222,5197222 and 62174013)
文摘Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a porous carbon(PC)of unimodal super-micropore(micro-PC)is realized.Such precise single-molecule confinement enables sufficient activity center exposure and maximum electron-transfer from micro-PC to POM,which well stabilizes the electron-accepting molecules and thoroughly activates its inherent multi-electron redox-activity.In particular,the redox-activities and electron-accepting properties of the confined POM molecule are revealed to be super-micropore pore size-dependent by experiment and spectroscopy as well as theoretical calculation.Meanwhile,the molecularly dispersed POM molecules confined steadily in the“cage”of micro-PC exhibit unprecedented large-negative-potential stability and multiple-peak redox-activity at an ultra-low loading of~11.4 wt%.As a result,the fabricated solid-state supercapacitor achieves a remarkable areal capacitance,ultrahigh energy and power density of 443 mF cm^(-2),0.12 mWh cm^(-2)and 21.1 mW cm^(-2),respectively.This work establishes a novel strategy for the precise confinement of single POM molecule,providing a versatile approach to inducing the intrinsic activity of POMs for advanced energy-storage systems.
基金supported by the Basic Science(Natural Science)Research Project of Higher Education of Jiangsu Province(Nos.21KJB230001 and 21KJB350019)the Open Foundation of Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening(No.HY202101)+1 种基金the Postdoctoral Science Foundation of Lianyungang(No.LYG20220013)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.
文摘Alcoholic liver disease(ALD)is the most frequent liver disease worldwide,resulting in severe harm to personal health and posing a serious burden to public health.Based on the reported antioxidant and anti-inflammatory capacities of scutellarin(SCU),this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration(10,25,and 50 mg/kg).The results indicated that SCU could lessen serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)levels and improve the histopathological changes in acute alcoholic liver;it reduced alcohol-induced malondialdehyde(MDA)content and increased glutathione peroxidase(GSH-Px),catalase(CAT),and superoxide dismutase(SOD)activity.Furthermore,SCU decreased tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),and IL-1βmessenger RNA(mRNA)expression levels,weakened inducible nitric oxide synthase(iNOS)activity,and inhibited nucleotide-binding oligomerization domain(NOD)-like receptor protein 3(NLRP3)inflammasome activation.Mechanistically,SCU suppressed cytochrome P450 family 2 subfamily E member 1(CYP2E1)upregulation triggered by alcohol,increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2(Nrf2)and heme oxygenase-1(HO-1)pathways,and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB(NF-κB)-α(IκBα)as well as activation of NF-κB by mediating the protein kinase B(AKT)and p38 mitogen-activated protein kinase(MAPK)pathways.These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT,p38 MAPK/NF-κB pathways.
基金supported by the National Natural Science Foundation of China(Nos.51822402,51971248,52101147 and U20A20278)the National Key Research and Development Program of China(No.2019YFA0209901 and 2018YFA0702901)+2 种基金the Liao Ning Revitalization Talents Program(No.XLYC1807047)the Natural Science Foundation of Jiangsu Province(No.BK20210726)the Fund of the State Key Laboratory of Solidification Process-ing in NWPU(No.SKLSP201902).
文摘1.Introduction Additive manufacturing or 3D printing outweighs conventional casting methods in the aspect of complex parts fabrication,which can realize one-step formation without the need of complicated cast dies.3D printing significantly promotes industrial production for making near-net shaped components.However,this promising technique is not always ideally applicable for metals and alloys.For example,titanium alloys prepared by 3D printing often suf-fer from poor plasticity,and usually require further complex heat treatment or hot isostatic pressing treatment,in order to remove internal stress and regulate plasticity and strength[1,2],which de-feats the original intention of employing additive manufacturing.One of the fundamental causes for such issues is the low fluidity of the alloys upon melting,leading to great chemical heterogeneity,high porosity content and residual stresses.This limitation hinders further design and fabrication of high-performance printable alloys from large scale production and application.
基金This work was supported by the Basic Science(Natural Science)Research Project of Higher Education of Jiangsu Province(No.21KJB230001)the Open Foundation of Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening(No.HY202101)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.
文摘Drinking culture has high significance in both China and the world,whether in the entertainment sector or in social occasions;according to the World Health Organization's 2018 Global Alcohol and Health Report,about 3 million people died from excessive drinking in 2016,accounting for 5.3%of the total global deaths that year.Oxidative stress and inflammation are the most common pathological phenomena caused by alcohol abuse(Snyder et al.,2017).