期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial-temporal variations and driving factors of soil organic carbon in forest ecosystems of Northeast China
1
作者 Shuai Wang Bol Roland +4 位作者 Kabindra Adhikari qianlai zhuang Xinxin Jin Chunlan Han Fengkui Qian 《Forest Ecosystems》 SCIE CSCD 2023年第2期141-152,共12页
Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance o... Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale. 展开更多
关键词 Soil organic carbon stocks Forest ecosystem Spatial-temporal variation Carbon sink Digital soil mapping
下载PDF
Assessment of soil total phosphorus storage in a complex topography along China's southeast coast based on multiple mapping scales
2
作者 Zhongxing CHEN Jing LI +7 位作者 Kai HUANG Miaomiao WEN qianlai zhuang Licheng LIU Peng ZHU Zhenong JIN Shihe XING Liming ZHANG 《Pedosphere》 SCIE CAS CSCD 2024年第1期236-251,共16页
Soil phosphorus (P) plays a vital role in both ecological and agricultural ecosystems, where total P (TP) in soil serves as a crucial indicator of soil fertility and quality. Most of the studies covered in the literat... Soil phosphorus (P) plays a vital role in both ecological and agricultural ecosystems, where total P (TP) in soil serves as a crucial indicator of soil fertility and quality. Most of the studies covered in the literature employ a single or narrow range of soil databases, which largely overlooks the impact of utilizing multiple mapping scales in estimating soil TP, especially in hilly topographies. In this study, Fujian Province, a subtropical hilly region along China’s southeast coast covered by a complex topographic environment, was taken as a case study. The influence of the mapping scale on soil TP storage (TPS)estimation was analyzed using six digital soil databases that were derived from 3 082 unique soil profiles at different mapping scales, i.e., 1:50 000 (S5),1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000). The regional TPS in the surface soil (0–20 cm) based on the S5, S20, S50, S100, S400, and S1000 soil maps was 20.72, 22.17, 23.06, 23.05, 22.04, and 23.48 Tg, respectively, and the corresponding TPS at0–100 cm soil depth was 80.98, 80.71, 85.00, 84.03, 82.96, and 86.72 Tg, respectively. By comparing soil TPS in the S20 to S1000 maps to that in the S5map, the relative deviations were 6.37%–13.32%for 0–20 cm and 0.33%–7.09%for 0–100 cm. Moreover, since the S20 map had the lowest relative deviation among different mapping scales as compared to S5, it could provide additional soil information and a richer soil environment than other smaller mapping scales. Our results also revealed that many uncertainties in soil TPS estimation originated from the lack of detailed soil information, i.e., representation and spatial variations among different soil types. From the time and labor perspectives, our work provides useful guidelines to identify the appropriate mapping scale for estimating regional soil TPS in areas like Fujian Province in subtropical China or other places with similar complex topographies. Moreover, it is of tremendous importance to accurately estimate soil TPS to ensure ecosystem stability and sustainable agricultural development, especially for regional decision-making and management of phosphate fertilizer application amounts. 展开更多
关键词 agricultural management appropriate mapping scale digitized conventional soil map estimation uncertainty subtropical hilly region
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部