期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Atmospheric dispersion prediction of accidental release:A review
1
作者 Zhan Dou Zhe Liu +4 位作者 Lili Li Hang Zhou qianlin wang Jianwen Zhang Liangchao Chen 《Emergency Management Science and Technology》 2022年第1期61-80,共20页
Modern industrial development is accompanied by the increasingly frequent occurrence of accidental release atmospheric dispersion events,causing extremely serious human and property losses and environmental pollution,... Modern industrial development is accompanied by the increasingly frequent occurrence of accidental release atmospheric dispersion events,causing extremely serious human and property losses and environmental pollution,in which rapid and accurate prediction of atmospheric dispersion is an important task to mitigate the unexpected consequences.In this paper,we take the case of previous years as the starting point,firstly,the occurred hazardous chemical atmospheric dispersion accidents in the past five years are shown,and the related concepts of hazardous chemical atmospheric dispersion are given.Then,the current state of atmospheric dispersion research is reviewed,well-known experiments on atmospheric dispersion of hazardous chemicals are summarized,and correspondingly the existing atmospheric dispersion prediction models are classified into simplified-experience models,mechanism-and rule-driven models and data-driven models.In particular,for the purpose of rapid atmospheric dispersion prediction,some research on atmospheric detection and identification are analyzed in detail.Moreover,the relevant professional software for atmospheric dispersion prediction are introduced,and also their calculation adaptabilities regarding time-consumption and output accuracy are discussed.Thereinafter,according to the shortcomings of existing atmospheric dispersion prediction models in research and application fields,the development trend of atmospheric dispersion prediction research and technology is foreseen,and some feasible future research directions are proposed as follows:(1)the fusion of image processing techniques,the establishment of a database of historical accident scene information and meteorological information,(2)new correction algorithms,and(3)an emergency response system for full-scene atmospheric dispersion prediction. 展开更多
关键词 PREDICTION METEOROLOGICAL DISPERSION
下载PDF
一种结构化的化工系统人因失误概率评估方法
2
作者 王倩琳 陈士成 +4 位作者 呼小栋 张建文 陈良超 李静海 窦站 《过程工程学报》 CAS CSCD 北大核心 2024年第5期609-617,共9页
化工生产系统高度非线性且复杂耦合化,使现有人因可靠性分析(HRA)技术难以直接应用,且分析结果的有效性和准确性差。为此,本工作将人因-危险和可操作性分析(人因HAZOP)与贝叶斯网络(BN)相融合,提出了一种结构化的化工系统人因失误概率... 化工生产系统高度非线性且复杂耦合化,使现有人因可靠性分析(HRA)技术难以直接应用,且分析结果的有效性和准确性差。为此,本工作将人因-危险和可操作性分析(人因HAZOP)与贝叶斯网络(BN)相融合,提出了一种结构化的化工系统人因失误概率评估方法。通过概述人因HAZOP的作业任务,筛选引导词和偏差,形成结构化的人因HAZOP报告,并据此构建BN模型,求解化工系统人因失误概率。以丙烯酸甲酯虚拟仿真工厂的酯化反应为例,人因失误概率的计算结果为0.0004,且主要人误行为是维护人员遗漏。对该化工系统进行传统CREAM分析,人因失误概率结果为0.0001~0.01。与传统CREAM相比,这种结构化方法能够高效且精确地评估化工系统人因失误概率。 展开更多
关键词 化工系统 人因失误概率 结构化评估 人因-危险和可操作性分析(人因HAZOP) 贝叶斯网络
原文传递
基于报警日志的炼化过程风险薄弱点深度挖掘
3
作者 朱英齐 王倩琳 +2 位作者 张东胜 窦站 张建文 《过程工程学报》 CAS CSCD 北大核心 2024年第3期371-380,共10页
在复杂炼化生产过程中,工艺报警日志蕴含着丰富的潜在风险信息,有助于揭示危险性根源、预防过程安全事故发生。为此,本工作提出了一种基于报警日志的炼化过程风险薄弱点深度挖掘方法。首先,针对本工作类型的工艺报警日志,利用Word2Vec... 在复杂炼化生产过程中,工艺报警日志蕴含着丰富的潜在风险信息,有助于揭示危险性根源、预防过程安全事故发生。为此,本工作提出了一种基于报警日志的炼化过程风险薄弱点深度挖掘方法。首先,针对本工作类型的工艺报警日志,利用Word2Vec词嵌入技术进行向量化预处理,同时通过Pearson相关系数法解析日志间的关联关系,以获取相关系数矩阵。其次,引入复杂网络(CN)理论,将相关系数矩阵转化为布尔矩阵,构建复杂炼化过程的风险表征网络模型。再次,采用逼近理想解排序法(TOPSIS)对所构建的网络模型开展节点重要度精确评估,主要涵盖度中心性、接近中心性和特征向量中心性3个指标。最后,根据网络节点重要度排序的优先级,可深度挖掘复杂炼化过程的风险薄弱点。以某套柴油加氢装置为例,分析结果表明,该方法可准确、有效地提取报警等级为“高高报(HH)”或“高报(HI)”的工艺报警日志,且与复杂炼化过程的实际运行工况相符。 展开更多
关键词 风险薄弱点 报警日志 节点重要度 复杂网络(CN) 逼近理想解排序法(TOPSIS)
原文传递
Real-time risk prediction of chemical processes based on attention-based Bi-LSTM
4
作者 qianlin wang Jiaqi Han +5 位作者 Feng Chen Xin Zhang Cheng Yun Zhan Dou Tingjun Yan Guoan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 2024年第11期131-141,共11页
Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource pr... Refined risk prediction must be achieved to guarantee the safe and steady operation of chemical production processes.However,there is high nonlinearity and association coupling among massive,complicated multisource process data,resulting in a low accuracy of existing prediction technology.For that reason,a real-time risk prediction method for chemical processes based on the attention-based bidirectional long short-term memory(Attention-based Bi-LSTM)is proposed in this study.First,multisource process data,such as temperature,pressure,flow rate,and liquid level,are preprocessed for denoising.Data correlation is analyzed in time windows by setting time windows and moving step lengths to explore correlations,thus establishing a complex network model oriented to the chemical production process.Second,network structure entropy is introduced to reduce the dimensions of the multisource process data.Moreover,a 1D relative risk sequence is acquired by maxemin deviation standardization to judge whether the chemical process is in a steady state.Finally,an Attention-based Bi-LSTM algorithm is established by integrating the attention mechanism and the Bi-LSTM network to fit and train 1D relative risk sequences.In that way,the proposed algorithm achieves real-time prediction and intelligent perception of risk states during chemical production.A case study based on the Tennessee Eastman process(TEP)is conducted.The validity and reasonability of the proposed method are verified by analyzing distribution laws of relative risks under normal and fault conditions.Also,the proposed algorithm importantly improves the prediction accuracy of chemical process risks relative to that of existing prediction technologies. 展开更多
关键词 Chemical processes Prediction Neural networks Network structure entropy Relative risk sequence
下载PDF
基于FRAM的化工装置事故情景推演研究 被引量:5
5
作者 王倩琳 田文慧 +3 位作者 张东胜 王峰 黑旭龙 杨国安 《过程工程学报》 CAS CSCD 北大核心 2022年第6期782-791,共10页
由于过程风险态势高、安全管控难度大,化工装置易发生非计划停车停产、有毒有害物质泄漏以及火灾爆炸等事故,给社会、经济和环境造成了巨大的负面影响。事故致因模型是解决事故情景构建与推演问题的重要工具,但传统模型无法全面捕捉系... 由于过程风险态势高、安全管控难度大,化工装置易发生非计划停车停产、有毒有害物质泄漏以及火灾爆炸等事故,给社会、经济和环境造成了巨大的负面影响。事故致因模型是解决事故情景构建与推演问题的重要工具,但传统模型无法全面捕捉系统要素间的非线性交互关系或者拘泥于系统要素错误的原因分析及其消除措施的有效制定。因此,本工作引入功能共振分析方法(FRAM),从整体系统的功能特征角度对化工装置事故情景开展推演研究。FRAM通过识别和描述基本功能、评估各功能的性能变化、确定功能共振的可能性以及制定性能变化的响应措施等步骤,能够深入回溯事故发生过程和演化情景,从而揭示化工装置事故的致因机理、挖掘化工装置的薄弱环节。以BP德克萨斯炼油厂爆炸事故为例,研究结果表明,该事故的主要原因是液位计B2、高液位报警器B3、加热炉S2和换热器S3产生了功能共振,从而引发了8种共振影响因素,并导致了12种功能失效连接。与时间与事件序列图(STEP)、事故地图(AcciMap)的分析结果进行了对比,验证了FRAM用于化工装置事故情景推演的可行性、有效性和合理性。 展开更多
关键词 化工装置事故 事故情景推演 事故致因模型 功能共振分析方法 功能网络图
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部