期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries
1
作者 qianwen yin Tianyu Li +3 位作者 Hongzhang Zhang Guiming Zhong Xiaofei Yang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期145-152,共8页
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ... Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs. 展开更多
关键词 Solid-state lithium batteries Solid-state NMR Anode-free SEI Dead Li
下载PDF
Research and development of new neodymium laser glasses 被引量:7
2
作者 Dongbing He Shuai Kang +4 位作者 Liyan Zhang Lin Chen Yajun Ding qianwen yin Lili Hu 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2017年第1期1-6,共6页
This work presents a brief introduction on three kinds of newly developed Nd^(3+)-doped laser glasses in Shanghai Institute of Optics and Fine Mechanics(SIOM), China. Two Nd^(3+)-doped phosphate glasses with lower the... This work presents a brief introduction on three kinds of newly developed Nd^(3+)-doped laser glasses in Shanghai Institute of Optics and Fine Mechanics(SIOM), China. Two Nd^(3+)-doped phosphate glasses with lower thermal expansion coefficient and thermal shock resistance 4 times higher than that of N31 glass are developed for laser processing.Nd:Silicate and Nd:Aluminate glasses with peak emission wavelength at 1061 and 1065 nm, effective emission bandwidth of 34 and 50 nm, respectively, are developed for Exawatt-class laser system application. Fluorophosphate glasses with low nonlinear refractive index(n_2=0.6–0.86) and long fluorescence lifetime(430–510 μs) are investigated for the purpose of decreasing B integral in high-power laser system. The properties of all these glasses are presented and compared with those of commercial neodymium laser glasses. 展开更多
关键词 ALUMINATE GLASS fluorophosphate GLASS high-power LASER NEODYMIUM LASER GLASS PHOSPHATE GLASS SILICATE GLASS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部