期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Neighbor Sum Distinguishing Total Colorings of Triangle Free Planar Graphs 被引量:4
1
作者 Ji Hui WANG qiao ling ma Xue HAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第2期216-224,共9页
A total k-coloring c of a graph G is a proper total coloring c of G using colors of the set [k] = {1, 2,...,k}. Let f(u) denote the sum of the color on a vertex u and colors on all the edges incident to u. A k-neigh... A total k-coloring c of a graph G is a proper total coloring c of G using colors of the set [k] = {1, 2,...,k}. Let f(u) denote the sum of the color on a vertex u and colors on all the edges incident to u. A k-neighbor sum distinguishing total coloring of G is a total k-coloring of G such that for each edge uv ∈ E(G), f(u) ≠ f(v). By X"nsd(G), we denote the smallest value k in such a coloring of G. Pilgniak and Wozniak conjectured that X"nsd(G) ≤ △(G)+ 3 for any simple graph with maximum degree △(G). In this paper, by using the famous Combinatorial Nullstellensatz, we prove that the conjecture holds for any triangle free planar graph with maximum degree at least 7. 展开更多
关键词 Neighbor sum distinguishing total coloring combinatorial Nullstellensatz triangle freeplanar graph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部