Silver nanowire(AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide(ITO) and have been proposed to replace ITO, which is currently w...Silver nanowire(AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide(ITO) and have been proposed to replace ITO, which is currently widely used in optoelectronic devices despite the scarcity of indium on Earth. In this paper, the current spreading and enhanced transmittance induced by AgNWs, which are two important factors influencing the light output power, were analyzed. The enhanced transmittance was studied by finite-difference time-domain simulation and verified by cathodoluminescence measurements.The enhancement ratio of the light output power decreased as the Ga P layer thickness increased, with enhancement ratio values of 79%, 52%, and 15% for Ga P layer thicknesses of 0.5 μm, 1 μm, and 8 μm, respectively, when an AgNW network was included in Al Ga In P light-emitting diodes. This was because of the decreased current distribution tunability of the AgNW network with the increase of the Ga P layer thickness. The large enhancement of the light output power was caused by the AgNWs increasing carrier spread out of the electrode and the enhanced transmittance induced by the plasmonic AgNWs. Further decreasing the sheet resistance of AgNW networks could raise their light output power enhancement ratio.展开更多
Ejaculated mammalian spermatozoa contain a complex yet specific population of mRNA. However, the possible roles that mRNA has in early zygotic and embryonic development remain unclear. We found that Dby mRNA is select...Ejaculated mammalian spermatozoa contain a complex yet specific population of mRNA. However, the possible roles that mRNA has in early zygotic and embryonic development remain unclear. We found that Dby mRNA is selectively retained in capacitated mouse spermatozoa, and is transferred into the oocyte during fertilization by reverse transcription-polymerase chain reaction even though no DBY protein expression is detected. The cellular location ofDby mRNA is seen in the post-acrosome region, and it comprises nearly half of the mouse spermatozoa in in situ hybridization. In contrast, transcripts of the control gene, Smcy, are not detected in capacitated mouse spermatozoa, although the H-Y antigen encoded by Smcy is expressed on the surface of the spermatozoa. In our microinjection experiment, the zygotic development rate of the as-Dby male pronucleus injection group was significantly lower than that of the as-Smcy male pronucleus injection group (35.9% vs. 95%, P = 0.001) and the as-Dby female pronucleus injection group (35.9% vs. 93.8%, P = 0.001). The rate of male-developed zygotes was also lower than that of the as-Smcy male pronucleus injection group (17.4% vs. 57.9%, P = 0.002) and the as-Dby female pronucleus injection group (17.4% vs. 54.1%, P = 0.002). Thus, we conclude that Dby mRNA is selectively retained in capaci- tated mouse spermatozoa, and it has an important role in the early zygotic development of male mouse zygotes. This might imply that spermatozoa mRNA is involved in early zygotic and embryonic stages of reproduction.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400603)the National Natural Science Foundation of China(Grant No.61335004)
文摘Silver nanowire(AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide(ITO) and have been proposed to replace ITO, which is currently widely used in optoelectronic devices despite the scarcity of indium on Earth. In this paper, the current spreading and enhanced transmittance induced by AgNWs, which are two important factors influencing the light output power, were analyzed. The enhanced transmittance was studied by finite-difference time-domain simulation and verified by cathodoluminescence measurements.The enhancement ratio of the light output power decreased as the Ga P layer thickness increased, with enhancement ratio values of 79%, 52%, and 15% for Ga P layer thicknesses of 0.5 μm, 1 μm, and 8 μm, respectively, when an AgNW network was included in Al Ga In P light-emitting diodes. This was because of the decreased current distribution tunability of the AgNW network with the increase of the Ga P layer thickness. The large enhancement of the light output power was caused by the AgNWs increasing carrier spread out of the electrode and the enhanced transmittance induced by the plasmonic AgNWs. Further decreasing the sheet resistance of AgNW networks could raise their light output power enhancement ratio.
基金This work is supported by the Agricultural Key Foundation of Shanghai, China (No. 2006-5-6), the National Natural Science Foundation of China (No. 3091490), the National Basic Research Program, China (No. 2009CB941704), PhD Programs Foundation of Ministry of Education of China (No. 200802480026) and the Shanghai Leading Academic Discipline Project, China (No. B205). We would like to extend our appreciation to Prof. Yi-Tao Zeng of the Shanghai Institute of Medical Genetics and Professor Lin He of the Bio-X Center of the Shanghai Jiao Tong University for their insightful comments.
文摘Ejaculated mammalian spermatozoa contain a complex yet specific population of mRNA. However, the possible roles that mRNA has in early zygotic and embryonic development remain unclear. We found that Dby mRNA is selectively retained in capacitated mouse spermatozoa, and is transferred into the oocyte during fertilization by reverse transcription-polymerase chain reaction even though no DBY protein expression is detected. The cellular location ofDby mRNA is seen in the post-acrosome region, and it comprises nearly half of the mouse spermatozoa in in situ hybridization. In contrast, transcripts of the control gene, Smcy, are not detected in capacitated mouse spermatozoa, although the H-Y antigen encoded by Smcy is expressed on the surface of the spermatozoa. In our microinjection experiment, the zygotic development rate of the as-Dby male pronucleus injection group was significantly lower than that of the as-Smcy male pronucleus injection group (35.9% vs. 95%, P = 0.001) and the as-Dby female pronucleus injection group (35.9% vs. 93.8%, P = 0.001). The rate of male-developed zygotes was also lower than that of the as-Smcy male pronucleus injection group (17.4% vs. 57.9%, P = 0.002) and the as-Dby female pronucleus injection group (17.4% vs. 54.1%, P = 0.002). Thus, we conclude that Dby mRNA is selectively retained in capaci- tated mouse spermatozoa, and it has an important role in the early zygotic development of male mouse zygotes. This might imply that spermatozoa mRNA is involved in early zygotic and embryonic stages of reproduction.