Ischemia/reperfusion(I/R) is a pathological process that occurs in numerous organs throughout the human body, and it is frequently associated with severe cellular damage and death. Recently it has emerged that ferropt...Ischemia/reperfusion(I/R) is a pathological process that occurs in numerous organs throughout the human body, and it is frequently associated with severe cellular damage and death. Recently it has emerged that ferroptosis, a new form of regulated cell death that is caused by iron-dependent lipid peroxidation, plays a significantly detrimental role in many I/R models. In this review, we aim to revise the pathological process of I/R and then explore the molecular pathogenesis of ferroptosis. Furthermore,we aim to evaluate the role that ferroptosis plays in I/R, providing evidence to support the targeting of ferroptosis in the I/R pathway may present as a therapeutic intervention to alleviate ischemia/reperfusion injury(IRI) associated cell damage and death.展开更多
基金the Ministry of Science and Technology of China(2018YFC1312300)National Natural Science Foundation of China(81722016,81801182)+1 种基金Sichuan Science and Technology Program(2018JPT0037,2018SZ0190)China Postdoctoral Science Foundation(2017M623041)。
文摘Ischemia/reperfusion(I/R) is a pathological process that occurs in numerous organs throughout the human body, and it is frequently associated with severe cellular damage and death. Recently it has emerged that ferroptosis, a new form of regulated cell death that is caused by iron-dependent lipid peroxidation, plays a significantly detrimental role in many I/R models. In this review, we aim to revise the pathological process of I/R and then explore the molecular pathogenesis of ferroptosis. Furthermore,we aim to evaluate the role that ferroptosis plays in I/R, providing evidence to support the targeting of ferroptosis in the I/R pathway may present as a therapeutic intervention to alleviate ischemia/reperfusion injury(IRI) associated cell damage and death.