期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting(SLM) 被引量:1
1
作者 Xuehao Gao Xin Lin +5 位作者 qiaodan yan Zihong Wang Xiaobin Yu Yinghui Zhou Yunlong Hu Weidong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第8期174-185,共12页
In this study,non-toxic in-situβphases of reinforced Ti/Zr-based bulk metallic glass matrix composites(BMGCs)of(Ti_(0.65)Zr_(0.35))100-xCux(x=5,10,15 at.%)are fabricated via selective laser melting.The effect of Cu c... In this study,non-toxic in-situβphases of reinforced Ti/Zr-based bulk metallic glass matrix composites(BMGCs)of(Ti_(0.65)Zr_(0.35))100-xCux(x=5,10,15 at.%)are fabricated via selective laser melting.The effect of Cu content on phase formation,microstructure,and mechanical properties is investigated.The average volume fraction and width of theβphase decreases with increasing Cu content,while a more amorphous phase and the(Ti,Zr)_(2)Cu phase forms.In the center zone of the molten pool,theβphase grows in the direction of the temperature gradient,and the amorphous phase distributes among theβphases.This occurs using:sphere morphology(for x=5),a more continuous elongated sphere and network morphology(for x=10),and network morphology(for x=15),respectively.In the edge zone of the molten pool,due to the smaller cooling rate and the existence of a partially molten zone,theβphase becomes coarser,and an amorphous phase forms for more continuous networks.Furthermore,the hardness improves significantly with increasing Cu content.No crack is found for x=5.Although the average volume fraction of theβphase for x=5 is about 90%,the compression yield strength is 1386±64 MPa,reaching to an average level of conventionally fabricated counterparts,due to finer microstructure,and twinning and martensitic transformation of theβphase. 展开更多
关键词 Metallic glass Amorphous phase βPhase Bulk metallic glass matrix composites(BMGCs) Additive manufacturing(AM) Selective laser melting(SLM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部