期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Halogen chlorine triggered oxygen vacancy-rich Ni(OH)_(2) with enhanced reaction kinetics for pseudocapacitive energy storage
1
作者 Jiangyu Hao Lijin Yan +6 位作者 Liang Luo qiaohui liu Youcun Bai Yuying Han Yang Zhou Xuefeng Zou Bin Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期296-306,I0007,共12页
Two-dimensional (2D)Ni(OH)_(2) nanosheets can theoretically expose their active sites of 100%.Whereas,their intrinsic easy accumulation and low conductivity lead to weak and unsustainable reaction kinetics.Herein,we p... Two-dimensional (2D)Ni(OH)_(2) nanosheets can theoretically expose their active sites of 100%.Whereas,their intrinsic easy accumulation and low conductivity lead to weak and unsustainable reaction kinetics.Herein,we propose a novel halogen chlorine-triggered electrochemical etching strategy to controllably manage the reaction kinetics of 2D Ni(OH)_(2) nanosheets(EE/Cl-Ni(OH)_(2)).It is found that halogen chlorine doping can adjust the interlamellar spacing flexibly and promote the lattice oxygen activation to achieve controlled construction of superficial oxygen defects at the adjustable voltage.The optimal EE/Cl-Ni(OH)_(2) electrode exhibits a high rate capability and excellent specific capacity of 206.9 mA h g^(-1) at 1 A g^(-1) in a three-electrode system,which is more than twice as high as the pristine Ni(OH)_(2).Furthermore,EE/Cl-Ni(OH)_(2) cathode and FeOOH@rGO anode are employed for developing an aqueous Ni-Fe battery with an excellent energy density of 83 W h kg^(-1),a high power density of 17051 W kg^(-1),and robust durability over 20,000 cycles.This strategy exploits a fresh channel for the ingenious fabrication of highefficiency and stable nickel-based deficiency materials for energy storage. 展开更多
关键词 Ni(OH)_(2) Electrochemical etching Lattice defects High energy density Ni-Fe battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部