The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a...The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.展开更多
Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,thei...Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,their further application is largely hindered by the shortage of flexible and stable power sources with multifunctional designability.Herein,a free-standing ZnHCF@CF electrode(ZnHCF grown on carbon nanotube fiber)with good mechanical deformability and high electrochemical performance for aqueous fiber-shaped calcium ion battery(FCIB)is reported.Benefiting from the unique Ca^(2+)/H^(+)co-insertion mechanism,the ZnHCF@CF cathode can exhibit great ion storage capability within a broadened voltage window.By pairing with a polyaniline(PANI)@CF anode,a ZnHCF@CF//PANI@CF FCIB is successfully fabricated,which exhibits a desirable volumetric energy density of 43.2mWh cm^(-3)and maintains superior electrochemical properties under different deformations.Moreover,the high-energy FCIB can be harmoniously integrated with a fiber-shaped strain sensor(FSS)to achieve real-time physiological monitoring on knees during long-running,exhibiting great promise for the practical application of electronic textiles.展开更多
Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resou...Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes.However,it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials.In this work,nanocube-like KNiFe(CN)6(KNHCF)and rugby balllike NaTi2(PO4)3(NTP)are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode(KNHCF@CNTF)and anode(NTP@CNTF),respectively.Taking advantage of their high conductivity,fast charge transport paths,and large accessible surface area,the as-fabricated binder-free electrodes display admirable electrochemical performance.Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF,a high-performance quasi-solid-state fiber-shaped ARSIB(FARSIB)is successfully assembled for the first time.Significantly,the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm?3 and impressive energy density of 39.32 mWh cm?3.More encouragingly,our FARSIB delivers superior mechanical flexibility with only 5.7%of initial capacity loss after bending at 90°for over 3000 cycles.Thus,this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics.展开更多
Prussian blue analogs(PBAs)are potential contestants for aqueous Mg-ion batteries(AMIBs)on account of their high discharge voltage and threedimensional open frameworks.However,the low capacity arising from single reac...Prussian blue analogs(PBAs)are potential contestants for aqueous Mg-ion batteries(AMIBs)on account of their high discharge voltage and threedimensional open frameworks.However,the low capacity arising from single reaction site severely restricts PBAs'practical applications in highenergy-density AMIBs.Here,an organic acid co-coordination combined with etching method is reported to fabricate defect-rich potassium-free copper hexacyanoferrate with structural water on carbon nanotube fiber(DCuHCF@CNTF).Benefiting from the high-valence-state reactive sites,arrayed structure and defect effect,the well-designed D-CuHCF@CNTF exhibits an extraordinary reversible capacity of 146.6 mAh g1 with two-electron reaction,nearly close to its theoretical capacity.It is interesting to unlock the reaction mechanism of the Fe2+/Fe3+and Cu+/Cu2+redox couples via x-ray photoelectron spectroscopy.Furthermore,density functional theory calculations reveal that Fe and Cu in potassium-free D-CuHCF participate in charge transfer during the Mg2+insertion/extraction process.As a proof-of-concept demonstration,a rocking-chair fiber-shaped AMIBs was constructed via coupling with the NaTi2(PO4)3/CNTF anode,achieving high energy density and impressive mechanical flexibility.This work provides new possibilities to develop potassium-free PBAs with dual-active sites as high-capacity cathodes for wearable AMIBs.展开更多
Aqueous Mg-ion batteries(AMIBs)featuring advantages of good safety,low cost,and high specific energy have been recognized as a promising energy-storage technology.However,the performance of AMIBs is consistently limit...Aqueous Mg-ion batteries(AMIBs)featuring advantages of good safety,low cost,and high specific energy have been recognized as a promising energy-storage technology.However,the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg2+and host materials.Here,layered-structured NiOOH,as traditional cathodes for alkaline batteries,is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform(0.57V)in neutral aqueous electrolytes.Benefiting from the unique core/shell structure,the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g−1 and long cycle stability.Further theoretical calculations reveal that the binding energy of hydrated Mg2+is higher than that of Mg2+with NiOOH,resulting in that Mg2+is easily intercalated/de-intercalated into/from NiOOH.Benefiting from the freestanding design,the assembled fiber-shaped“rocking-chair”NaTi2(PO4)3//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility,which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors.展开更多
Fibers and fabrics have been closely related to the daily life of humans for millennia.With the advancement of the artificial intelligence of things(AIoT)and wearable technology,functional fibers came into being and u...Fibers and fabrics have been closely related to the daily life of humans for millennia.With the advancement of the artificial intelligence of things(AIoT)and wearable technology,functional fibers came into being and underwent revolutionary progress and development.1 Today,fibers have transcended the traditional concept of clothing,being no longer limited to shelter for the body,individual privacy protection,and the aesthetic expression of ourselves but moving in the direction of high-performance,high-end intelligence and green development.2 We are on the verge of an era of all-textile electronics following the first,second,and third generations.Textile electronics,a high-tech carrier of future AI,enable interactions between individuals and their surroundings via stimuli sensations,executive feedback,energy harvesting and storage,display,computation,and communication functions,wherever and whenever possible.3 Textile electronics are responsible for integrating human society,the information space,and the physical world.Their subversive and revolutionary nature promises to promote the integration and development of materials,communications,AI,healthcare,and other forms of multi-disciplinary integration,leading humankind toward a more civilized,intelligent society.展开更多
Neutral aqueous rechargeable Co_(3)O_(4)//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices.To meet the increasing demand for a mean...Neutral aqueous rechargeable Co_(3)O_(4)//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices.To meet the increasing demand for a means of powering wearable and portable devices,the development of a high-performance fiber-shaped Co//Zn battery would be highly desirable.However,the intrinsically poor conductivity of C 03O4 significantly restricts the application of these high-capacity and high-rate aqueous rechargeable battery.Encouragingly,density functional theory(DFT)calculations demonstrate that the substitution of Zn for Co^(3+)leads to an insulatormetal transition in the Zn-doped Co_(3)O_(4)(Zn-Co_(3)O_(4)).In this study,we used metallic Zn-Co_(3)O_(4)nanowire arrays(NWAs)as a novel binder-free cathode to successfully fabricate an all-solid-state fiber-shaped aqueous rechargeable(AFAR)Co//Zn battery.The resulting fiber-shaped Co//Zn battery takes advantage of the enhanced conductivity,increased capacity,and improved rate capability of Zn-Co_(3)O_(4)NWAs to yield a remarkable capacity of 1.25 mAh·cm^(-2)at a current density of 0.5 mA·cm^(-2),extraordinary rate capability(60.8%capacity retention at a high current density of 20 mA·cm^(-2))and an admirable energy density of 772.6 mWh·cm^(-3).Thus,the successful construction of Zn-Co_(3)O_(4)NWAs provides valuable insights into the design of high-capacity and high-rate cathode materials for aqueous rechargeable high-voltage batteries.展开更多
Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic ...Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic electrolytes, high ionic conductivity, and low cost. Unfortunately, the low energy density,poor power density and cycling performance hinder its further practical applications. In this study, in order to obtain high performance negative iron-based material, we first synthesized a-iron oxide(α-Fe2O3) nanorods(NRs) with superstructures on the surface of highly conductive carbon nanotube fibers(CNTFs), then electrically conductive polypyrrole(PPy) was coated to enhance the electron, ion diffusion and cycle stability. The as-prepared α-Fe2O3@PPy NRs/CNTF electrode shows a high specific capacity of 0.62 Ah cm-3 at the current density of 1 A cm-3. Furthermore, the Ni/Fe battery that was assembled by the above negative electrode shows a maximum volumetric energy density of 15.47 mWh cm-3 with228.2 mW cm-3 at a current density of 1 A cm-3. The cycling durability and mechanical flexibility of the Ni/Fe battery were tested, which show good prospect for practical application. In summary, these merits make it possible for our Ni/Fe battery to have practical applications in next generation flexible energy storage devices.展开更多
Fiber-based supercapacitors (FSCs) are new members of the energy storage family. They present excellent flexibility and have promising applications in lightweight, flexible, and wearable devices. One of the existing...Fiber-based supercapacitors (FSCs) are new members of the energy storage family. They present excellent flexibility and have promising applications in lightweight, flexible, and wearable devices. One of the existing challenges of FSCs is enhancing their energy density while retaining the flexibility. We developed a facile and cost-effective method to fabricate a highly capacitive positive electrode based on hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays/graphene fibers and a negative electrode based on polyaniline-derived carbon nanorods/graphene fibers. The elegant microstructures and excellent electrochemical performances of both electrodes enabled us to construct a high- performance flexible asymmetric graphene fiber-based supercapacitor device with an operating voltage of 1.4 V, a specific capacitance up to 61.58 mF.cm-2, and an energy density reaching 16.76 μW·h·cm-2. Moreover, the optimal device presents an outstanding cycling stability with 87.5% initial capacitance retention after 8,000 cycles, and an excellent flexibility with a capacitance retention of 90.9% after 4,000 cycles of repetitive bending.展开更多
The integration of a display function with wearable interactive sensors offers a promising way to synchronously detect physiological signals and visualize pressure/stimuli.However,combining these two functions in a st...The integration of a display function with wearable interactive sensors offers a promising way to synchronously detect physiological signals and visualize pressure/stimuli.However,combining these two functions in a strain sensor textile is a longstanding challenge due to the physical separation of sensors and display units.Here,a water-stable luminescent perovskite hydrogel(emission band approximately 25 nm)is constructed by blending as-prepared CsPbBr_(3)@PbBr(OH)with stretchable polyacrylamide(PAM)hydrogels.The facile introduction of CsPbBr_(3)@PbBr(OH)endows the hydrogels with excellent optical properties and a high mechanical strength of 51.3 kPa at a fracture strain of 740%.Interestingly,the resulting hydrogels retain bright green fluorescence under conditions including water,ultraviolet light,and extensive stretching(>700%).As a proof-of-concept,a novel wearable stretchable strain sensor textile based on these hydrogels is developed,and it displays visual-digital synergetic strain detection ability.It can perceive various motions on the human body in real time with electronic output signals from changes in resistance and simultaneously readable optical output signals,whether on land or underwater.This work provides a meaningful guide to rationally design perovskite hydrogels and accelerates the development of wearable visual-digital strain sensor textiles.展开更多
基金the National Key R&D Program of China(2022YFA1203304)the Natural Science Foundation of Jiangsu Province(BK20220288)+1 种基金Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(Start-up grant E1552102)the China Postdoctoral Science Foundation(No.2023M732553).
文摘The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.
基金partially supported by the Natural Science Foundation of Liaoning Province(2023-MS-115)the Large Instrument and Equipment Open Foundation of Dalian University of Technology+1 种基金the National Natural Science Foundation of China(22308261)funding from the Fundamental Research Funds for the Central Universities,conducted at Tongji University。
文摘Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,their further application is largely hindered by the shortage of flexible and stable power sources with multifunctional designability.Herein,a free-standing ZnHCF@CF electrode(ZnHCF grown on carbon nanotube fiber)with good mechanical deformability and high electrochemical performance for aqueous fiber-shaped calcium ion battery(FCIB)is reported.Benefiting from the unique Ca^(2+)/H^(+)co-insertion mechanism,the ZnHCF@CF cathode can exhibit great ion storage capability within a broadened voltage window.By pairing with a polyaniline(PANI)@CF anode,a ZnHCF@CF//PANI@CF FCIB is successfully fabricated,which exhibits a desirable volumetric energy density of 43.2mWh cm^(-3)and maintains superior electrochemical properties under different deformations.Moreover,the high-energy FCIB can be harmoniously integrated with a fiber-shaped strain sensor(FSS)to achieve real-time physiological monitoring on knees during long-running,exhibiting great promise for the practical application of electronic textiles.
基金supported by the Fundamental Research Funds for the Central Universities(No.020514380183)the National Natural Science Foundation of China(No.51703241)+1 种基金the Key Research Program of Frontier Science of Chinese Academy of Sciences(No.QYZDB-SSW-SLH031)the Thousand Youth Talents Plan,and the Science and Technology Project of Nanchang(2017-SJSYS-008).
文摘Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes.However,it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials.In this work,nanocube-like KNiFe(CN)6(KNHCF)and rugby balllike NaTi2(PO4)3(NTP)are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode(KNHCF@CNTF)and anode(NTP@CNTF),respectively.Taking advantage of their high conductivity,fast charge transport paths,and large accessible surface area,the as-fabricated binder-free electrodes display admirable electrochemical performance.Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF,a high-performance quasi-solid-state fiber-shaped ARSIB(FARSIB)is successfully assembled for the first time.Significantly,the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm?3 and impressive energy density of 39.32 mWh cm?3.More encouragingly,our FARSIB delivers superior mechanical flexibility with only 5.7%of initial capacity loss after bending at 90°for over 3000 cycles.Thus,this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics.
基金National Key R&D Program of China,Grant/Award Number:2022YFA1203304Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20220288Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Grant/Award Number:E1552102。
文摘Prussian blue analogs(PBAs)are potential contestants for aqueous Mg-ion batteries(AMIBs)on account of their high discharge voltage and threedimensional open frameworks.However,the low capacity arising from single reaction site severely restricts PBAs'practical applications in highenergy-density AMIBs.Here,an organic acid co-coordination combined with etching method is reported to fabricate defect-rich potassium-free copper hexacyanoferrate with structural water on carbon nanotube fiber(DCuHCF@CNTF).Benefiting from the high-valence-state reactive sites,arrayed structure and defect effect,the well-designed D-CuHCF@CNTF exhibits an extraordinary reversible capacity of 146.6 mAh g1 with two-electron reaction,nearly close to its theoretical capacity.It is interesting to unlock the reaction mechanism of the Fe2+/Fe3+and Cu+/Cu2+redox couples via x-ray photoelectron spectroscopy.Furthermore,density functional theory calculations reveal that Fe and Cu in potassium-free D-CuHCF participate in charge transfer during the Mg2+insertion/extraction process.As a proof-of-concept demonstration,a rocking-chair fiber-shaped AMIBs was constructed via coupling with the NaTi2(PO4)3/CNTF anode,achieving high energy density and impressive mechanical flexibility.This work provides new possibilities to develop potassium-free PBAs with dual-active sites as high-capacity cathodes for wearable AMIBs.
基金This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2019-T2-2-127 and MOE-T2EP50120-0002)supported by the National Key R&D Program of China(2022YFA1203304)+10 种基金the Natural Science Foundation of Jiangsu Province(BK20220288)the Singapore Ministry of Education Academic Research Fund Tier 1(RG62/22)A*STAR under AME IRG(A2083c0062)This work was supported by A*STAR under its IAF-ICP Programme I2001E0067the Schaeffler Hub for Advanced Research at NTU.This work was also supported by NTU-PSL Joint Lab collaboration.We are grateful for the technical support of 2D GIWAXS for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences.This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2019-T2-2-127 and MOE-T2EP50120-0002)supported by the National Key R&D Program of China(2022YFA1203304)the Natural Science Foundation of Jiangsu Province(BK20220288)the Singapore Ministry of Education Academic Research Fund Tier 1(RG62/22)A*STAR under AME IRG(A2083c0062)This work was supported by A*STAR under its IAF-ICP Programme I2001E0067the Schaeffler Hub for Advanced Research at NTU.This work was also supported by NTU-PSL Joint Lab collaboration.We are grateful for the technical support of 2D GIWAXS for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences.
文摘Aqueous Mg-ion batteries(AMIBs)featuring advantages of good safety,low cost,and high specific energy have been recognized as a promising energy-storage technology.However,the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg2+and host materials.Here,layered-structured NiOOH,as traditional cathodes for alkaline batteries,is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform(0.57V)in neutral aqueous electrolytes.Benefiting from the unique core/shell structure,the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g−1 and long cycle stability.Further theoretical calculations reveal that the binding energy of hydrated Mg2+is higher than that of Mg2+with NiOOH,resulting in that Mg2+is easily intercalated/de-intercalated into/from NiOOH.Benefiting from the freestanding design,the assembled fiber-shaped“rocking-chair”NaTi2(PO4)3//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility,which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors.
基金supported by the National Key R&D Program of China(2022YFA1203304)the Natural Science Foundation of Jiangsu Province(BK20220288)+2 种基金the Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(start-up grant E1552102)the fellowship of the China National Postdoctoral Program for Innovative Talents,China(BX20240408)the Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Fibers and fabrics have been closely related to the daily life of humans for millennia.With the advancement of the artificial intelligence of things(AIoT)and wearable technology,functional fibers came into being and underwent revolutionary progress and development.1 Today,fibers have transcended the traditional concept of clothing,being no longer limited to shelter for the body,individual privacy protection,and the aesthetic expression of ourselves but moving in the direction of high-performance,high-end intelligence and green development.2 We are on the verge of an era of all-textile electronics following the first,second,and third generations.Textile electronics,a high-tech carrier of future AI,enable interactions between individuals and their surroundings via stimuli sensations,executive feedback,energy harvesting and storage,display,computation,and communication functions,wherever and whenever possible.3 Textile electronics are responsible for integrating human society,the information space,and the physical world.Their subversive and revolutionary nature promises to promote the integration and development of materials,communications,AI,healthcare,and other forms of multi-disciplinary integration,leading humankind toward a more civilized,intelligent society.
基金the National Natural Science Foundation of China(No.51703241)the Fundamental Research Funds for the Central Universities(No.020514380183)+1 种基金the Key Research Program of Frontier Science of Chinese Academy of Sciences(No.QYZDB-SSW-SLH031)the Science and Technology Project of Nanchang(No.2017-SJSYS-008).
文摘Neutral aqueous rechargeable Co_(3)O_(4)//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices.To meet the increasing demand for a means of powering wearable and portable devices,the development of a high-performance fiber-shaped Co//Zn battery would be highly desirable.However,the intrinsically poor conductivity of C 03O4 significantly restricts the application of these high-capacity and high-rate aqueous rechargeable battery.Encouragingly,density functional theory(DFT)calculations demonstrate that the substitution of Zn for Co^(3+)leads to an insulatormetal transition in the Zn-doped Co_(3)O_(4)(Zn-Co_(3)O_(4)).In this study,we used metallic Zn-Co_(3)O_(4)nanowire arrays(NWAs)as a novel binder-free cathode to successfully fabricate an all-solid-state fiber-shaped aqueous rechargeable(AFAR)Co//Zn battery.The resulting fiber-shaped Co//Zn battery takes advantage of the enhanced conductivity,increased capacity,and improved rate capability of Zn-Co_(3)O_(4)NWAs to yield a remarkable capacity of 1.25 mAh·cm^(-2)at a current density of 0.5 mA·cm^(-2),extraordinary rate capability(60.8%capacity retention at a high current density of 20 mA·cm^(-2))and an admirable energy density of 772.6 mWh·cm^(-3).Thus,the successful construction of Zn-Co_(3)O_(4)NWAs provides valuable insights into the design of high-capacity and high-rate cathode materials for aqueous rechargeable high-voltage batteries.
基金This work was supported by the National Natural Science Foundation of China (51972162 and 51703241)the Postdoctoral Foundation of Jiangsu Province (2019Z203 and 2019K001)the Science and Technology Project of Nanchang (2017-SJSYS008)
文摘Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic electrolytes, high ionic conductivity, and low cost. Unfortunately, the low energy density,poor power density and cycling performance hinder its further practical applications. In this study, in order to obtain high performance negative iron-based material, we first synthesized a-iron oxide(α-Fe2O3) nanorods(NRs) with superstructures on the surface of highly conductive carbon nanotube fibers(CNTFs), then electrically conductive polypyrrole(PPy) was coated to enhance the electron, ion diffusion and cycle stability. The as-prepared α-Fe2O3@PPy NRs/CNTF electrode shows a high specific capacity of 0.62 Ah cm-3 at the current density of 1 A cm-3. Furthermore, the Ni/Fe battery that was assembled by the above negative electrode shows a maximum volumetric energy density of 15.47 mWh cm-3 with228.2 mW cm-3 at a current density of 1 A cm-3. The cycling durability and mechanical flexibility of the Ni/Fe battery were tested, which show good prospect for practical application. In summary, these merits make it possible for our Ni/Fe battery to have practical applications in next generation flexible energy storage devices.
基金This work was supported by the National Key R&D Program of China (No. 2017YFB0406000), the Key Research Program of Frontier Science of Chinese Academy of Sciences (No. QYZDB-SSW-SLH031), the Natural Science Foundation of Jiangsu Province, China (Nos. BK20160399 and BK20140392), the Transformation of Scientific and Technological Achievements in Jiangsu Province (No. BA2016026), the Postdoctoral Foundation of Jiangsu Province (No. 1601065B), and the Science and Technology Project of Suzhou, China (Nos. SZS201508, ZXG201428, and ZXG201401).
文摘Fiber-based supercapacitors (FSCs) are new members of the energy storage family. They present excellent flexibility and have promising applications in lightweight, flexible, and wearable devices. One of the existing challenges of FSCs is enhancing their energy density while retaining the flexibility. We developed a facile and cost-effective method to fabricate a highly capacitive positive electrode based on hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays/graphene fibers and a negative electrode based on polyaniline-derived carbon nanorods/graphene fibers. The elegant microstructures and excellent electrochemical performances of both electrodes enabled us to construct a high- performance flexible asymmetric graphene fiber-based supercapacitor device with an operating voltage of 1.4 V, a specific capacitance up to 61.58 mF.cm-2, and an energy density reaching 16.76 μW·h·cm-2. Moreover, the optimal device presents an outstanding cycling stability with 87.5% initial capacitance retention after 8,000 cycles, and an excellent flexibility with a capacitance retention of 90.9% after 4,000 cycles of repetitive bending.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20220288)Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(Start-up grant E1552102)+2 种基金This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 2(MOE2019-T2-2-127 and MOE-T2EP50120-0002),and A*STAR under AME IRG(A2083c0062)This work was supported by A*STAR under its IAF-ICP Programme I2001E0067 and the Schaeffler Hub for Advanced Research at NTUThis work was also supported by NTU-PSL Joint Lab collaboration。
文摘The integration of a display function with wearable interactive sensors offers a promising way to synchronously detect physiological signals and visualize pressure/stimuli.However,combining these two functions in a strain sensor textile is a longstanding challenge due to the physical separation of sensors and display units.Here,a water-stable luminescent perovskite hydrogel(emission band approximately 25 nm)is constructed by blending as-prepared CsPbBr_(3)@PbBr(OH)with stretchable polyacrylamide(PAM)hydrogels.The facile introduction of CsPbBr_(3)@PbBr(OH)endows the hydrogels with excellent optical properties and a high mechanical strength of 51.3 kPa at a fracture strain of 740%.Interestingly,the resulting hydrogels retain bright green fluorescence under conditions including water,ultraviolet light,and extensive stretching(>700%).As a proof-of-concept,a novel wearable stretchable strain sensor textile based on these hydrogels is developed,and it displays visual-digital synergetic strain detection ability.It can perceive various motions on the human body in real time with electronic output signals from changes in resistance and simultaneously readable optical output signals,whether on land or underwater.This work provides a meaningful guide to rationally design perovskite hydrogels and accelerates the development of wearable visual-digital strain sensor textiles.