期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
In Situ Polymer Gel Electrolyte in Boosting Scalable Fibre Lithium Battery Applications
1
作者 Jie Luo qichong zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期170-173,共4页
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a... The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future. 展开更多
关键词 High-performance fibre lithium batteries Gel electrolytes Channel structures Stable interface Scalable application
下载PDF
High-energy fiber-shaped calcium-ion batteries enable integrated wearable electronics for human body monitoring
2
作者 Yanyan Liu Bing He +7 位作者 Jie Pu Minxing Yu Yifu zhang Changgong Meng qichong zhang Jian Wu Lei Wei Zhenghui Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期661-670,共10页
Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,thei... Electronic textiles hold the merits of high conformability with the human body and natural surrounding,possessing large market demand and wide application foreground in smart wearable and portable devices.However,their further application is largely hindered by the shortage of flexible and stable power sources with multifunctional designability.Herein,a free-standing ZnHCF@CF electrode(ZnHCF grown on carbon nanotube fiber)with good mechanical deformability and high electrochemical performance for aqueous fiber-shaped calcium ion battery(FCIB)is reported.Benefiting from the unique Ca^(2+)/H^(+)co-insertion mechanism,the ZnHCF@CF cathode can exhibit great ion storage capability within a broadened voltage window.By pairing with a polyaniline(PANI)@CF anode,a ZnHCF@CF//PANI@CF FCIB is successfully fabricated,which exhibits a desirable volumetric energy density of 43.2mWh cm^(-3)and maintains superior electrochemical properties under different deformations.Moreover,the high-energy FCIB can be harmoniously integrated with a fiber-shaped strain sensor(FSS)to achieve real-time physiological monitoring on knees during long-running,exhibiting great promise for the practical application of electronic textiles. 展开更多
关键词 Human body monitoring Wearable electronics Calcium-ion battery High volumetric energy density Strain sensors
下载PDF
All Binder-Free Electrodes for High-Performance Wearable Aqueous Rechargeable Sodium-Ion Batteries 被引量:2
3
作者 Bing He Ping Man +6 位作者 qichong zhang Huili Fu Zhenyu Zhou Chaowei Li Qiulong Li Lei Wei Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期766-777,共12页
Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resou... Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes.However,it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials.In this work,nanocube-like KNiFe(CN)6(KNHCF)and rugby balllike NaTi2(PO4)3(NTP)are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode(KNHCF@CNTF)and anode(NTP@CNTF),respectively.Taking advantage of their high conductivity,fast charge transport paths,and large accessible surface area,the as-fabricated binder-free electrodes display admirable electrochemical performance.Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF,a high-performance quasi-solid-state fiber-shaped ARSIB(FARSIB)is successfully assembled for the first time.Significantly,the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm?3 and impressive energy density of 39.32 mWh cm?3.More encouragingly,our FARSIB delivers superior mechanical flexibility with only 5.7%of initial capacity loss after bending at 90°for over 3000 cycles.Thus,this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics. 展开更多
关键词 Carbon NANOTUBE fiber Binder-free electrode Flexibility AQUEOUS RECHARGEABLE ENERGY-STORAGE device Sodium-ion battery
下载PDF
Two-electron redox chemistry enables potassium-free copper hexacyanoferrate as high-capacity cathode for aqueous Mg-ion battery
4
作者 Ying Ling Bing He +3 位作者 Lijie Han Wenbin Gong Chaofeng Chang qichong zhang 《InfoMat》 SCIE CSCD 2024年第6期64-75,共12页
Prussian blue analogs(PBAs)are potential contestants for aqueous Mg-ion batteries(AMIBs)on account of their high discharge voltage and threedimensional open frameworks.However,the low capacity arising from single reac... Prussian blue analogs(PBAs)are potential contestants for aqueous Mg-ion batteries(AMIBs)on account of their high discharge voltage and threedimensional open frameworks.However,the low capacity arising from single reaction site severely restricts PBAs'practical applications in highenergy-density AMIBs.Here,an organic acid co-coordination combined with etching method is reported to fabricate defect-rich potassium-free copper hexacyanoferrate with structural water on carbon nanotube fiber(DCuHCF@CNTF).Benefiting from the high-valence-state reactive sites,arrayed structure and defect effect,the well-designed D-CuHCF@CNTF exhibits an extraordinary reversible capacity of 146.6 mAh g1 with two-electron reaction,nearly close to its theoretical capacity.It is interesting to unlock the reaction mechanism of the Fe2+/Fe3+and Cu+/Cu2+redox couples via x-ray photoelectron spectroscopy.Furthermore,density functional theory calculations reveal that Fe and Cu in potassium-free D-CuHCF participate in charge transfer during the Mg2+insertion/extraction process.As a proof-of-concept demonstration,a rocking-chair fiber-shaped AMIBs was constructed via coupling with the NaTi2(PO4)3/CNTF anode,achieving high energy density and impressive mechanical flexibility.This work provides new possibilities to develop potassium-free PBAs with dual-active sites as high-capacity cathodes for wearable AMIBs. 展开更多
关键词 aqueous Mg-ion battery energy-storage fiber high capacity Prussian blue analogs twoelectron reaction
原文传递
Modulating selective interaction of NiOOH with Mg ions for high-performance aqueous batteries
5
作者 Bing He Ying Ling +10 位作者 Zhixun Wang Wenbin Gong Zhe Wang Yanting Liu Tianzhu Zhou Ting Xiong Shuai Wang Yonggang Wang Qingwen Li qichong zhang Lei Wei 《eScience》 2024年第5期160-169,共10页
Aqueous Mg-ion batteries(AMIBs)featuring advantages of good safety,low cost,and high specific energy have been recognized as a promising energy-storage technology.However,the performance of AMIBs is consistently limit... Aqueous Mg-ion batteries(AMIBs)featuring advantages of good safety,low cost,and high specific energy have been recognized as a promising energy-storage technology.However,the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg2+and host materials.Here,layered-structured NiOOH,as traditional cathodes for alkaline batteries,is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform(0.57V)in neutral aqueous electrolytes.Benefiting from the unique core/shell structure,the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g−1 and long cycle stability.Further theoretical calculations reveal that the binding energy of hydrated Mg2+is higher than that of Mg2+with NiOOH,resulting in that Mg2+is easily intercalated/de-intercalated into/from NiOOH.Benefiting from the freestanding design,the assembled fiber-shaped“rocking-chair”NaTi2(PO4)3//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility,which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors. 展开更多
关键词 NiOOHAqueous electrolyte Mg-intercalation chemistry Rocking-chair Mg-ion batteries Fiber electronics
原文传递
Chipless textile electronics enable wireless digital interactions
6
作者 Zhiqing Bai qichong zhang 《The Innovation》 EI 2024年第5期17-18,共2页
Fibers and fabrics have been closely related to the daily life of humans for millennia.With the advancement of the artificial intelligence of things(AIoT)and wearable technology,functional fibers came into being and u... Fibers and fabrics have been closely related to the daily life of humans for millennia.With the advancement of the artificial intelligence of things(AIoT)and wearable technology,functional fibers came into being and underwent revolutionary progress and development.1 Today,fibers have transcended the traditional concept of clothing,being no longer limited to shelter for the body,individual privacy protection,and the aesthetic expression of ourselves but moving in the direction of high-performance,high-end intelligence and green development.2 We are on the verge of an era of all-textile electronics following the first,second,and third generations.Textile electronics,a high-tech carrier of future AI,enable interactions between individuals and their surroundings via stimuli sensations,executive feedback,energy harvesting and storage,display,computation,and communication functions,wherever and whenever possible.3 Textile electronics are responsible for integrating human society,the information space,and the physical world.Their subversive and revolutionary nature promises to promote the integration and development of materials,communications,AI,healthcare,and other forms of multi-disciplinary integration,leading humankind toward a more civilized,intelligent society. 展开更多
关键词 enable ELECTRONICS integrating
原文传递
Boosting Zn-ion storage capability of self-standing Zn-doped Co_(3)O_(4)nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries 被引量:5
7
作者 Qiulong Li qichong zhang +5 位作者 Zhengyu Zhou Wenbin Gong Chenglong Liu Yongbao Feng Guo Hong Yagang Yao 《Nano Research》 SCIE EI CSCD 2021年第1期91-99,共9页
Neutral aqueous rechargeable Co_(3)O_(4)//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices.To meet the increasing demand for a mean... Neutral aqueous rechargeable Co_(3)O_(4)//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices.To meet the increasing demand for a means of powering wearable and portable devices,the development of a high-performance fiber-shaped Co//Zn battery would be highly desirable.However,the intrinsically poor conductivity of C 03O4 significantly restricts the application of these high-capacity and high-rate aqueous rechargeable battery.Encouragingly,density functional theory(DFT)calculations demonstrate that the substitution of Zn for Co^(3+)leads to an insulatormetal transition in the Zn-doped Co_(3)O_(4)(Zn-Co_(3)O_(4)).In this study,we used metallic Zn-Co_(3)O_(4)nanowire arrays(NWAs)as a novel binder-free cathode to successfully fabricate an all-solid-state fiber-shaped aqueous rechargeable(AFAR)Co//Zn battery.The resulting fiber-shaped Co//Zn battery takes advantage of the enhanced conductivity,increased capacity,and improved rate capability of Zn-Co_(3)O_(4)NWAs to yield a remarkable capacity of 1.25 mAh·cm^(-2)at a current density of 0.5 mA·cm^(-2),extraordinary rate capability(60.8%capacity retention at a high current density of 20 mA·cm^(-2))and an admirable energy density of 772.6 mWh·cm^(-3).Thus,the successful construction of Zn-Co_(3)O_(4)NWAs provides valuable insights into the design of high-capacity and high-rate cathode materials for aqueous rechargeable high-voltage batteries. 展开更多
关键词 Zn-doped Co_(3)O_(4) aqueous rechargeable Co//Zn battery fiber-shaped high-capacity high-rate
原文传递
Superstructured α-Fe2O3 nanorods as novel binder-free anodes for high-performing fiber-shaped Ni/Fe battery 被引量:4
8
作者 Chenglong Liu Qiulong Li +5 位作者 Jingwen Cao qichong zhang Ping Mana Zhenyu Zhou Chaowei Li Yagang Yao 《Science Bulletin》 SCIE EI CAS CSCD 2020年第10期812-819,M0003,M0004,共10页
Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic ... Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic electrolytes, high ionic conductivity, and low cost. Unfortunately, the low energy density,poor power density and cycling performance hinder its further practical applications. In this study, in order to obtain high performance negative iron-based material, we first synthesized a-iron oxide(α-Fe2O3) nanorods(NRs) with superstructures on the surface of highly conductive carbon nanotube fibers(CNTFs), then electrically conductive polypyrrole(PPy) was coated to enhance the electron, ion diffusion and cycle stability. The as-prepared α-Fe2O3@PPy NRs/CNTF electrode shows a high specific capacity of 0.62 Ah cm-3 at the current density of 1 A cm-3. Furthermore, the Ni/Fe battery that was assembled by the above negative electrode shows a maximum volumetric energy density of 15.47 mWh cm-3 with228.2 mW cm-3 at a current density of 1 A cm-3. The cycling durability and mechanical flexibility of the Ni/Fe battery were tested, which show good prospect for practical application. In summary, these merits make it possible for our Ni/Fe battery to have practical applications in next generation flexible energy storage devices. 展开更多
关键词 a-Fe2O3 nanorods SUPERSTRUCTURES PPy coating Ni/Fe battery Wearable electronics
原文传递
Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors 被引量:3
9
作者 Jingxin Zhao Chaowei Li +10 位作者 qichong zhang Jun zhang Xiaona Wang Juan Sun Juanjuan Wang Jixun Xie Ziyin Lin Zhuo Li Weibang Lu Conghua Lu Yagang Yao 《Nano Research》 SCIE EI CAS CSCD 2018年第4期1775-1786,共12页
Fiber-based supercapacitors (FSCs) are new members of the energy storage family. They present excellent flexibility and have promising applications in lightweight, flexible, and wearable devices. One of the existing... Fiber-based supercapacitors (FSCs) are new members of the energy storage family. They present excellent flexibility and have promising applications in lightweight, flexible, and wearable devices. One of the existing challenges of FSCs is enhancing their energy density while retaining the flexibility. We developed a facile and cost-effective method to fabricate a highly capacitive positive electrode based on hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays/graphene fibers and a negative electrode based on polyaniline-derived carbon nanorods/graphene fibers. The elegant microstructures and excellent electrochemical performances of both electrodes enabled us to construct a high- performance flexible asymmetric graphene fiber-based supercapacitor device with an operating voltage of 1.4 V, a specific capacitance up to 61.58 mF.cm-2, and an energy density reaching 16.76 μW·h·cm-2. Moreover, the optimal device presents an outstanding cycling stability with 87.5% initial capacitance retention after 8,000 cycles, and an excellent flexibility with a capacitance retention of 90.9% after 4,000 cycles of repetitive bending. 展开更多
关键词 fiber-based supercapacitors ferric-cobalt-nickel ternary oxide nanowire arrays polyaniline-derived carbon nanorods flexibility
原文传递
Stretchable Luminescent Perovskite‑Polymer Hydrogels for Visual‑Digital Wearable Strain Sensor Textiles 被引量:3
10
作者 Xinxin Li Long Chen +5 位作者 Shuanglong Yuan Hua Tong Qilin Cheng Huidan Zeng Lei Wei qichong zhang 《Advanced Fiber Materials》 SCIE EI CAS 2023年第5期1671-1684,共14页
The integration of a display function with wearable interactive sensors offers a promising way to synchronously detect physiological signals and visualize pressure/stimuli.However,combining these two functions in a st... The integration of a display function with wearable interactive sensors offers a promising way to synchronously detect physiological signals and visualize pressure/stimuli.However,combining these two functions in a strain sensor textile is a longstanding challenge due to the physical separation of sensors and display units.Here,a water-stable luminescent perovskite hydrogel(emission band approximately 25 nm)is constructed by blending as-prepared CsPbBr_(3)@PbBr(OH)with stretchable polyacrylamide(PAM)hydrogels.The facile introduction of CsPbBr_(3)@PbBr(OH)endows the hydrogels with excellent optical properties and a high mechanical strength of 51.3 kPa at a fracture strain of 740%.Interestingly,the resulting hydrogels retain bright green fluorescence under conditions including water,ultraviolet light,and extensive stretching(>700%).As a proof-of-concept,a novel wearable stretchable strain sensor textile based on these hydrogels is developed,and it displays visual-digital synergetic strain detection ability.It can perceive various motions on the human body in real time with electronic output signals from changes in resistance and simultaneously readable optical output signals,whether on land or underwater.This work provides a meaningful guide to rationally design perovskite hydrogels and accelerates the development of wearable visual-digital strain sensor textiles. 展开更多
关键词 Metal halide perovskites Stretchable luminescent hydrogels Strain sensor textiles AMPHIBIOUS Visualdigital synergies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部