High-temperature proton exchange membrane fuel cells(HT-PEMFCs)bring new opportunities for portable power generation due to their outstanding advantages such as high tolerance to fuel/air impurities and simplified hea...High-temperature proton exchange membrane fuel cells(HT-PEMFCs)bring new opportunities for portable power generation due to their outstanding advantages such as high tolerance to fuel/air impurities and simplified heat/water management.However,carbon-supported nanostructured Pt-based catalysts running at temperatures over 150℃are challenged by the severe aggregation and carbon corrosion,thus leading to poor durability.Herein,we demonstrate that dendritic Pt-Ni nanoparticles supported on fluorinated carbon black(white carbon black)could significantly enhance the performance and durability of HT-PEMFCs as the cathode catalysts running at 160℃due to the strong interaction of the F and Ni atoms to form a Ni_(x)F_(y) interface on Pt-Ni nanoparticles.With the formation of a stable Ni_(x)F_(y) interface,this integrated HT-PEMFC reached peak power densities of 906 mW cm^(−2) and demonstrated excellent durability at 160℃ under anhydrous H_(2)/O_(2) conditions.This mitigation strategy was applied to Pt-alloy/C electrocatalysts and resulted in the elimination of Pt dissolution in practical fuel cells.展开更多
基金supported by the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(21825201,U19A2017)+3 种基金the Provincial Natural Science Foundation of Hunan(2019GK2031,2016TP1009,2020JJ5045)China Postdoctoral Science Foundation(2020M682541)the Science and Technology Innovation Program of Hunan Province,China(2020RC2020)Changsha Municipal Natural Science Foundation(kq2007009)。
文摘High-temperature proton exchange membrane fuel cells(HT-PEMFCs)bring new opportunities for portable power generation due to their outstanding advantages such as high tolerance to fuel/air impurities and simplified heat/water management.However,carbon-supported nanostructured Pt-based catalysts running at temperatures over 150℃are challenged by the severe aggregation and carbon corrosion,thus leading to poor durability.Herein,we demonstrate that dendritic Pt-Ni nanoparticles supported on fluorinated carbon black(white carbon black)could significantly enhance the performance and durability of HT-PEMFCs as the cathode catalysts running at 160℃due to the strong interaction of the F and Ni atoms to form a Ni_(x)F_(y) interface on Pt-Ni nanoparticles.With the formation of a stable Ni_(x)F_(y) interface,this integrated HT-PEMFC reached peak power densities of 906 mW cm^(−2) and demonstrated excellent durability at 160℃ under anhydrous H_(2)/O_(2) conditions.This mitigation strategy was applied to Pt-alloy/C electrocatalysts and resulted in the elimination of Pt dissolution in practical fuel cells.