In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time in...In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time interval, the relation between the network states and the network-induced delays is modelled as a discrete-time hidden Markov model (DTHMM). The expectation maximization (EM) algorithm is introduced to derive the maximumlikelihood estimation (MLE) of the parameters of the DTHMM. Based on the derived DTHMM, the Viterbi algorithm is introduced to predict the controller-to-actuator (C-A) delay during the current sampling period. The simulation experiments demonstrate the effectiveness of the modelling and predicting methods proposed.展开更多
基金supported in part by the National Natural Science Foundation of China (60774098 60843003+3 种基金 50905172)the Science Foundation of Anhui Province (090412071 090412040)the University of Science and Technology of China Initiative Foundation
文摘In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time interval, the relation between the network states and the network-induced delays is modelled as a discrete-time hidden Markov model (DTHMM). The expectation maximization (EM) algorithm is introduced to derive the maximumlikelihood estimation (MLE) of the parameters of the DTHMM. Based on the derived DTHMM, the Viterbi algorithm is introduced to predict the controller-to-actuator (C-A) delay during the current sampling period. The simulation experiments demonstrate the effectiveness of the modelling and predicting methods proposed.