Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulat...Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulate matter. To avoid such environmental problems, renewable energy has been applied to automobiles. In this paper, an air-powered engine of a renewable energy vehicle is introduced. To lay a foundation for the optimization of compressed air engine (CAE), a physical model of compressed air engine (CAE) is established with cam which controls compressed air charge or discharge cylinder. To obtain performance of the CAE, a prototype CAE system is set up. The output torque, power and efficiency are obtained through experimental study. The results show that the prototype of CAE has a good economic performance under low speed and when the supply pressure is 2 MPa, the maximum output power is 1.92 kW;the maximum output torque is 56.55 N·m;and the maximum efficiency is 25%. This research can be referred to in the optimization of air-powered engine.展开更多
To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to...To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to above system.In order to reduce leakage and aerodynamic force influence,a new type high-pressure solenoid valve was proposed.The simulation model which included electromagnetic model,aerodynamic force model was established by means of the nonlinear mathematic models.Using the software MATLAB/Simulink for simulation,the dynamic response characteristics of high-pressure pneumatic solenoid valve were obtained under different pulse width modulation(PWM)input control signals.Results show that,first of all,the new type of high-pressure solenoid valve can meet the switch requirement.Secondly,the opening movement and closing movement of the spool lags the PWM rising signal,and the coil current fluctuates significantly during the movement of the spool.Lastly,on/off status of high-pressure valve cannot be represented by the duty cycle.This research can be referred in the design of the high-pressure solenoid valve..展开更多
Accurate fuel injection control of aircraft engine can optimize the energy efficiency of UAV power system while meeting the propeller speed requirement. Traditional injection control method such as open-loop calibrati...Accurate fuel injection control of aircraft engine can optimize the energy efficiency of UAV power system while meeting the propeller speed requirement. Traditional injection control method such as open-loop calibration causes instability of fuel supply which brings the risk of power loss of UAV. Considering that the closed-loop control of AFR can ensure a stable fuel feeding, this paper proposes an AFR control based fuel supply strategy in order to improve the efficiency of fuel-powered UAV while obtaining the required engine speed. According to the optimum fuel injection results, we implement fuzzy-PID method to control the set AFR in different situations. Through simulation and experiment studies, the results indicate that, to begin with, the calibrated mathematical model of the aircraft engine is effective. Next, this fuel supply strategy based on AFR control can normally realize the engine speed regulation, and the applied control algorithm can eliminate the overshoot of AFR throughout all the working progress. What is more,the fuel supply strategy can averagely shorten the response time of the engine speed by about two seconds. In addition, compared with the open-loop calibration, in this work the power efficiency is improved by 9% to 33%. Last but not the least, the endurance can be improved by 30 min with a normal engine speed. This paper can be a reference for the optimization of UAV aircraft engine.展开更多
文摘Nowadays, automobiles consume a large number of fossil fuels. However, the consumption of fossil fuels has brought many serious environmental problems, such as global warming, ozone layer depletion and fine particulate matter. To avoid such environmental problems, renewable energy has been applied to automobiles. In this paper, an air-powered engine of a renewable energy vehicle is introduced. To lay a foundation for the optimization of compressed air engine (CAE), a physical model of compressed air engine (CAE) is established with cam which controls compressed air charge or discharge cylinder. To obtain performance of the CAE, a prototype CAE system is set up. The output torque, power and efficiency are obtained through experimental study. The results show that the prototype of CAE has a good economic performance under low speed and when the supply pressure is 2 MPa, the maximum output power is 1.92 kW;the maximum output torque is 56.55 N·m;and the maximum efficiency is 25%. This research can be referred to in the optimization of air-powered engine.
基金The research work presented in this paper is financially supported by a grant(NJZZ18139)from the scientific research project of Universities in Inner Mongoliaa grant(2018BS05003)from the Natural Science Foundation of Inner Mongoliaa grant(2017QDL-B07)from Inner Mongolia University of Science and Technology Innovation Fund Project.
文摘To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to above system.In order to reduce leakage and aerodynamic force influence,a new type high-pressure solenoid valve was proposed.The simulation model which included electromagnetic model,aerodynamic force model was established by means of the nonlinear mathematic models.Using the software MATLAB/Simulink for simulation,the dynamic response characteristics of high-pressure pneumatic solenoid valve were obtained under different pulse width modulation(PWM)input control signals.Results show that,first of all,the new type of high-pressure solenoid valve can meet the switch requirement.Secondly,the opening movement and closing movement of the spool lags the PWM rising signal,and the coil current fluctuates significantly during the movement of the spool.Lastly,on/off status of high-pressure valve cannot be represented by the duty cycle.This research can be referred in the design of the high-pressure solenoid valve..
基金financially supported by the National Natural Science Foundation of China (No. 51605013)the Pneumatic and Thermodynamic Energy Storage and Supply Beijing Key Laboratory
文摘Accurate fuel injection control of aircraft engine can optimize the energy efficiency of UAV power system while meeting the propeller speed requirement. Traditional injection control method such as open-loop calibration causes instability of fuel supply which brings the risk of power loss of UAV. Considering that the closed-loop control of AFR can ensure a stable fuel feeding, this paper proposes an AFR control based fuel supply strategy in order to improve the efficiency of fuel-powered UAV while obtaining the required engine speed. According to the optimum fuel injection results, we implement fuzzy-PID method to control the set AFR in different situations. Through simulation and experiment studies, the results indicate that, to begin with, the calibrated mathematical model of the aircraft engine is effective. Next, this fuel supply strategy based on AFR control can normally realize the engine speed regulation, and the applied control algorithm can eliminate the overshoot of AFR throughout all the working progress. What is more,the fuel supply strategy can averagely shorten the response time of the engine speed by about two seconds. In addition, compared with the open-loop calibration, in this work the power efficiency is improved by 9% to 33%. Last but not the least, the endurance can be improved by 30 min with a normal engine speed. This paper can be a reference for the optimization of UAV aircraft engine.