Nickel-iron sulfide has shown attractive activity in electrocatalytic oxygen evolution reaction(OER).However,the effects of low valence sulfur(S^(2−))and metal species on OER in binary nickel-iron sulfide have rarely ...Nickel-iron sulfide has shown attractive activity in electrocatalytic oxygen evolution reaction(OER).However,the effects of low valence sulfur(S^(2−))and metal species on OER in binary nickel-iron sulfide have rarely been systematically studied.Works based on post-catalysis characterization have led to the assumption that the real active species are nickel-iron oxyhydroxide,and that nickel-iron sulfide acts only as a precatalyst.Therefore,to study the role of S,Ni,and Fe for the development of nickel-iron sulfide catalyst is of self-evident importance.Herein,a facile solvothermal method is used to synthesize acetylene black coated with nickel-iron sulfide nanosheets.Electrochemical tests show that the presence of low valence S species makes the catalyst have faster OER kinetics,larger active area,and intermediate active species adsorption area.Therefore,the present study reveals the enhancing effect of low valence sulfur species(S^(2−))on OER in binary nickel-iron sulfide.In situ Raman spectroscopy shows that the generation ofγ-NiOOH intermediate is essential and Fe does not directly participate in the oxygen production.Density functional theory(DFT)calculation shows that Ni-OH deprotonation is a rate-determining step for both binary nickel-iron sulfide and nickel sulfide.The addition of Fe into NiSx lightly increases the charge transfer of Ni atom to O atom,which makes deprotonation easier and thereby improves the OER performance.展开更多
基金the National Natural Science Foundation of China(No.21901007)the Natural Science Foundation of Anhui Province(No.2008085QB83).
文摘Nickel-iron sulfide has shown attractive activity in electrocatalytic oxygen evolution reaction(OER).However,the effects of low valence sulfur(S^(2−))and metal species on OER in binary nickel-iron sulfide have rarely been systematically studied.Works based on post-catalysis characterization have led to the assumption that the real active species are nickel-iron oxyhydroxide,and that nickel-iron sulfide acts only as a precatalyst.Therefore,to study the role of S,Ni,and Fe for the development of nickel-iron sulfide catalyst is of self-evident importance.Herein,a facile solvothermal method is used to synthesize acetylene black coated with nickel-iron sulfide nanosheets.Electrochemical tests show that the presence of low valence S species makes the catalyst have faster OER kinetics,larger active area,and intermediate active species adsorption area.Therefore,the present study reveals the enhancing effect of low valence sulfur species(S^(2−))on OER in binary nickel-iron sulfide.In situ Raman spectroscopy shows that the generation ofγ-NiOOH intermediate is essential and Fe does not directly participate in the oxygen production.Density functional theory(DFT)calculation shows that Ni-OH deprotonation is a rate-determining step for both binary nickel-iron sulfide and nickel sulfide.The addition of Fe into NiSx lightly increases the charge transfer of Ni atom to O atom,which makes deprotonation easier and thereby improves the OER performance.