期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
On-chip readout plasmonic mid-IR gas sensor 被引量:12
1
作者 Qin Chen Li Liang +2 位作者 qilin zheng Yaxin Zhang Long Wen 《Opto-Electronic Advances》 2020年第7期17-28,I0002,共13页
Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change.Here a novel mid-IR plasmonic gas sensor w... Gas identification and concentration measurements are important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change.Here a novel mid-IR plasmonic gas sensor with on-chip direct readout is proposed based on unity integration of narrowband spectral response,localized field enhancement and thermal detection.A systematic investigation consisting of both optical and thermal simulations for gas sensing is presented for the first time in three sensing modes including refractive index sensing,absorption sensing and spectroscopy,respectively.It is found that a detection limit less than 100 ppm for CO2 could be realized by a combination of surface plasmon resonance enhancement and metal-organic framework gas enrichment with an enhancement factor over 8000 in an ultracompact optical interaction length of only several microns.Moreover,on-chip spectroscopy is demonstrated with the compressive sensing algorithm via a narrowband plasmonic sensor array.An array of 80 such sensors with an average resonance linewidth of 10 nm reconstructs the CO2 molecular absorption spectrum with the estimated resolution of approximately 0.01 nm far beyond the state-of-the-art spectrometer.The novel device design and analytical method are expected to provide a promising technique for extensive applications of distributed or portable mid-IR gas sensor. 展开更多
关键词 gas sensor MID-IR ON-CHIP surface plasmon resonance SPECTROSCOPY
下载PDF
Bandwidth-tunable silicon nitride microring resonators
2
作者 刘嘉成 吴超 +3 位作者 夏功榆 郑骑林 朱志宏 徐平 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期263-266,共4页
We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is c... We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is continuously adjustable whose quality factor varies from 7.9×10^(4) to 1.9×10^(5) with the extinction ratio keeping higher than 25 dB.Also a variety of coupling spanning from"under-coupling"to"over-coupling"were achieved,showing the ability to tune the quality factor from 6.0×10^(3) to 2.3×10^(5).Our design can provide an adjustable filtering method on silicon nitride photonic chip and contribute to optimize the nonlinear process for quantum photonics and all-optical signal processing. 展开更多
关键词 silicon nitride microring resonators Mach-Zehnder interferometer ring filter nonlinear optics
下载PDF
Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
3
作者 郑骑林 刘嘉成 +8 位作者 吴超 薛诗川 朱枰谕 王洋 于馨瑶 余苗苗 邓明堂 吴俊杰 徐平 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期129-134,共6页
High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional... High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler,the dynamical and extensive tuning range of quality factors of the microring can be obtained,and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb,we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/m W;under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing. 展开更多
关键词 silicon microring resonator quantum entanglement biphoton frequency comb
下载PDF
Near 100%spectral-purity photons from reconfigurable micro-rings
4
作者 朱枰谕 刘英文 +7 位作者 吴超 薛诗川 于馨瑶 郑骑林 王洋 强晓刚 吴俊杰 徐平 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期135-139,共5页
We propose an on-chip reconfigurable micro-ring to engineer the spectral-purity of photons.The micro-ring resonator is designed to be coupled by one or two asymmetric Mach-Zehnder interferometers and the coupling coef... We propose an on-chip reconfigurable micro-ring to engineer the spectral-purity of photons.The micro-ring resonator is designed to be coupled by one or two asymmetric Mach-Zehnder interferometers and the coupling coefficients hence the quality-factors of the pump and the converted photons can be dynamically changed by the interferometer’s internal phase-shifter.We calculate the joint-spectrum function and obtain the spectral-purity of photons and Schmidt number under different phases.We show that it is a dynamical method to adjust the spectral-purity and can optimize the spectralpurity of photons up to near 100%.The condition for high-spectral-purity photons is ensured by the micro-ring itself,so it overcomes the trade-off between spectral purity and brightness in the traditional post-filtering method.This scheme is robust to fabrication variations and can be successfully applied in different fabrication labs and different materials.Such high-spectral-purity photons will be beneficial for quantum information processing like Boson sampling and other quantum algorithms. 展开更多
关键词 spectral-purity micro-ring Mach–Zehnder interferometer
下载PDF
Heralded path-entangled NOON states generation from a reconfigurable photonic chip
5
作者 于馨瑶 朱枰谕 +7 位作者 王洋 余苗苗 吴超 薛诗川 郑骑林 刘英文 吴俊杰 徐平 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期358-362,共5页
Maximal multi-photon entangled states,known as NOON states,play an essential role in quantum metrology.With the number of photons growing,NOON states are becoming increasingly powerful and advantageous for obtaining s... Maximal multi-photon entangled states,known as NOON states,play an essential role in quantum metrology.With the number of photons growing,NOON states are becoming increasingly powerful and advantageous for obtaining supersensitive and super-resolved measurements.In this paper,we propose a universal scheme for generating three-and four-photon path-entangled NOON states on a reconfigurable photonic chip via photons subtracted from pairs and detected by heralding counters.Our method is postselection free,enabling phase supersensitive measurements and sensing at the Heisenberg limit.Our NOON-state generator allows for integration of quantum light sources as well as practical and portable precision phase-related measurements. 展开更多
关键词 path-entangled NOON state phase measurement
下载PDF
On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron-molecule interaction 被引量:2
6
作者 Long Wen Zhiwei Sun +6 位作者 qilin zheng Xianghong Nan Zaizhu Lou Zhong Liu David R.S.Cumming Baojun Li Qin Chen 《Light(Science & Applications)》 SCIE EI CSCD 2023年第4期625-635,共11页
Hydrogen energy is a zero-carbon replacement for fossil fuels.However,hydrogen is highly flammable and explosive hence timely sensitive leak detection is crucial.Existing optical sensing techniques rely on complex ins... Hydrogen energy is a zero-carbon replacement for fossil fuels.However,hydrogen is highly flammable and explosive hence timely sensitive leak detection is crucial.Existing optical sensing techniques rely on complex instruments,while electrical sensing techniques usually operate at high temperatures and biasing condition.In this paper an on-chip plasmonic-catalytic hydrogen sensing concept with a concentration detection limit down to 1 ppm is presented that is based on a metal-insulator-semiconductor(MIS)nanojunction operating at room temperature and zero bias.The sensing signal of the device was enhanced by three orders of magnitude at a one-order of magnitude higher response speed compared to alternative non-plasmonic devices.The excellent performance is attributed to the hydrogen induced interfacial dipole charge layer and the associated plasmonic hot electron modulated photoelectric response.Excellent agreements were achieved between experiment and theoretical calculations based on a quantum tunneling model.Such an on-chip combination of plasmonic optics,photoelectric detection and photocatalysis offers promising strategies for next-generation optical gas sensors that require high sensitivity,low time delay,low cost,high portability and flexibility. 展开更多
关键词 HYDROGEN INTERACTION hence
原文传递
Boosting the dimensionality of frequency entanglement using a reconfigurable microring resonator
7
作者 Chao Wu qilin zheng +11 位作者 Yingwen Liu Yang Wang Jiangfang Ding Pingyu Zhu Shichuan Xue Miaomiao Yu Weihong Luo Kaikai Zhang Anqi Huang Mingtang Deng Junjie Wu Ping Xu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第5期79-88,共10页
Integrated quantum frequency combs(QFCs)based on microring resonators supplies as an essential resource for expanding the Hilbert-space dimensionality for high-dimensional quantum computing and information processing.... Integrated quantum frequency combs(QFCs)based on microring resonators supplies as an essential resource for expanding the Hilbert-space dimensionality for high-dimensional quantum computing and information processing.In this work,we propose and demonstrate a reconfigurable ring resonator with tunable quality factors to efficiently increase the dimensionality of frequency entanglement,simultaneously,ensuring a high on-chip pair generation rate(PGR)and coincidence-to-accidental ratio(CAR).Our method exploits the asymmetric Mach-Zehnder interferometer instead of the traditional straight waveguide as the coupler of resonators which offer a tunable external coupling coefficient to modulate the quality factor to enlarge the QFCs’bandwidth and thus increase the dimensionality of frequency entanglement.We measured the QFCs’joint spectral intensity of 28 frequency pairs under various quality factors ranging from 16.6×10^(4) to 3.4×10^(4).Meanwhile,the measured Schmidt number increased from 11.01 to 24.77,denoting a huge expansion of the Hilbert-space dimensionality from 121 to a record number of 613 dimensions,which agrees well with our theoretical calculations.In addition,the PGR and CAR-another two key parameters for high-quality QFCs-were all measured under different quality factors to verify that our method can significantly increase the Schmidt number and CAR while maintaining a high PGR.In fact,bright QFCs with a total PGR of 4.3 MHz under a 0.48 mW pump power and a mean CAR of 1578 were simultaneously obtained at the highest Schmidt number.This method is widely applicable to other material-based ring resonators and can act as a general solution for high-dimensional QFCs. 展开更多
关键词 reconfigurable resonator quantum frequency comb Hilbert-space dimensionality
原文传递
Experimental demonstration of quantum transport enhancement using time-reversal symmetry breaking on a silicon photonic chip
8
作者 Yang Wang Xinyao Yu +11 位作者 Shichuan Xue Yizhi Wang Junwei Zhan Chao Wu Pingyu Zhu qilin zheng Miaomiao Yu Yingwen Liu Xiaogang Qiang Junjie Wu Xuejun Yang Ping Xu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第10期2-9,共8页
The continuous-time quantum walk is a basic model for studying quantum transport and developing quantum-enhanced algorithms. Recent studies show that by introducing a phase into the standard continuous-time quantum wa... The continuous-time quantum walk is a basic model for studying quantum transport and developing quantum-enhanced algorithms. Recent studies show that by introducing a phase into the standard continuous-time quantum walk model, the time-reversal symmetry can be broken without changing the Hermitian property of the Hamiltonian. The time-reversal symmetry breaking quantum walk shows advantages in quantum transport, such as perfect state transfer, directional control, transport speedup, and quantum transport efficiency enhancement. In this work, we implement the time-reversal symmetry breaking quantum walks on a reconfigurable silicon photonic chip and demonstrate the enhancement introduced by breaking time-reversal symmetry. Perfect state transfer on a three-site ring, a quantum switch implemented on a six-site graph, and transport speedup using a linear chain of triangles are demonstrated with high fidelity. Time-reversal asymmetry has also been used in a simplified light-harvesting model,implying the potential of time-reversal symmetry breaking in photosynthesis investigations. 展开更多
关键词 quantum walk time-reversal asymmetry quantum transport
原文传递
On-chip multiphoton Greenberger-Horne Zeilinger state based on integrated frequency combs
9
作者 Pingyu Zhu qilin zheng +7 位作者 Shichuan Xue Chao Wu Xinyao Yu Yang Wang Yingwen Liu Xiaogang Qiang Junjie Wu Ping Xu 《Frontiers of physics》 SCIE CSCD 2020年第6期33-41,共9页
One of the most important multipartite entangled states,Greenberger-Horne-Zeilinger state(GHZ),serves as a fundamental resource for quantum foundat ion test,quantum communication and quantum computation.To increase th... One of the most important multipartite entangled states,Greenberger-Horne-Zeilinger state(GHZ),serves as a fundamental resource for quantum foundat ion test,quantum communication and quantum computation.To increase the number of entangled particles,significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state.Here,we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs.By designing several microrings pumped by different lasers,multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode.Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pumnp wavelengths.In addition,we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state.Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies. 展开更多
关键词 quantum information Greenberger-Horne Zeilinger state frequency comb
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部