The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. ...The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. Therefore, it is important to improve the heat dissipation and EMI shielding performancein device packaging for the steady operation of electronic products. In recent years, due to its intrinsic superior thermal conductivity, proper electrical conductivity, light-weight, and structural adjustability,graphene has been widely used as high thermal and conductive fillers incorporated in the polymer matrix to improve the thermal conductivity and electrical conductivity of composites. This review concludesthe recent development of graphene/polymer composites by using graphene as fillers to improve thethermal conductivity and EMI shielding effectiveness (EMI SE). The structure of graphene embedded inthe composites varies from zero-dimension (0D), one-dimension (1D) to two-dimensions (2D). Moreover,highly thermally and electrically conductive fillers with different dimensions were also modified on thegraphene to improve the composite performance. Finally, this review also makes prospects for the development trend of graphene/polymer composites with high thermal conductivity and EMI SE in the future.展开更多
With the rapid growth in electronic device performance,there has been an increasing demand for thermally conductive polymer composites to handle the thermal management issue,thus contributing to the great importance t...With the rapid growth in electronic device performance,there has been an increasing demand for thermally conductive polymer composites to handle the thermal management issue,thus contributing to the great importance to develop the graphene framework,which is evaluated as the most promising reinforcements for enhancing the thermal conductivity of polymer.Vacuum filtration is a common method to fabricate graphene framework,whereas,it is available to prepare a framework with centimeter-scale thickness by filtrating the graphene-water dispersion,due to the fact of sample cracking caused by the mismatch of surface tension between graphene and water.In this work,a surfactantassisted strategy was proposed by adjusting the surface tension of the water close to that of graphene first,then performing a conventional filtration process,to fabricate graphene framework.As a result,a thick graphene framework(thickness:3 cm)was successfully prepared,and after embedding into epoxy,the framework endows the composite(13.6 wt%)with a high in-plane thermal conductivities of12.4 W/mK,which is equivalent to≈64 times higher than that of neat epoxy.Our method is simple and compatible with the conventional filtration process,suggesting great potential for the mass-production of graphene framework to meet the practical application requirements.展开更多
As the power density of electronic devices increases,there has been an urgent demand to develop highly conductive polymer composites to address the accompanying thermal management issues.Due to the ultra-high intrinsi...As the power density of electronic devices increases,there has been an urgent demand to develop highly conductive polymer composites to address the accompanying thermal management issues.Due to the ultra-high intrinsic thermal conductivity,graphene is considered a very promising filler to improve the thermal conductivity of polymers.However,graphene-based polymer composites prepared by the conventional mixing method generally have limited thermal conductivity,even under high graphene loading,due to the failure to construct efficient heat transfer pathways in the polymer matrix.Here,a spiral graphene framework(SGF)containing continuous and highly ordered graphene microtubes was developed based on a modified CVD method.After embedding into the epoxy(EP)matrix,the graphene microtubes can act as efficient heat pathways,endowing the SGF/EP composites with a high through-plane thermal conductivity of 1.35 W·m^(-1)·K^(-1) at an ultralow graphene loading of 0.86 wt%.This result gives a thermal conductivity enhancement per 1 wt%filler loading of 710%,significantly outperforming various graphene structures as fillers.In addition,we demonstrated the practical application of the SGF/EP composite as a thermal interface material for efficient thermal man-agement of the light-emitting diode(LED).展开更多
Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. T...Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consist- ing of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corre- sponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended sur- faces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.展开更多
基金The authors are grateful for the financial support by the National Natural Science Foundation of China(No.52102055)China Postdoctoral Science Foundation(No.2020M681965)+6 种基金Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2019-3)the Project of the Chinese Academy of Sciences(Nos.XDC07030100,XDA22020602,KFZD-SW-409 and ZDKYYQ20200001)CAS Youth Innovation Promotion Association(No.2020301),Science and Technology Major Project of Ningbo(Nos.2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo(No.2017A610010)Foundation of State Key Laboratory of Solid lubrication(No.LSL-1912)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(No.6142905192806)the K.C.Wong Education Foundation(No.GJTD-2019-13)。
文摘The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. Therefore, it is important to improve the heat dissipation and EMI shielding performancein device packaging for the steady operation of electronic products. In recent years, due to its intrinsic superior thermal conductivity, proper electrical conductivity, light-weight, and structural adjustability,graphene has been widely used as high thermal and conductive fillers incorporated in the polymer matrix to improve the thermal conductivity and electrical conductivity of composites. This review concludesthe recent development of graphene/polymer composites by using graphene as fillers to improve thethermal conductivity and EMI shielding effectiveness (EMI SE). The structure of graphene embedded inthe composites varies from zero-dimension (0D), one-dimension (1D) to two-dimensions (2D). Moreover,highly thermally and electrically conductive fillers with different dimensions were also modified on thegraphene to improve the composite performance. Finally, this review also makes prospects for the development trend of graphene/polymer composites with high thermal conductivity and EMI SE in the future.
基金financial support by the National Key R&D Program of China (No.2017YFB0406000)Scientific Instrument Developing Project of the Chinese Academy of Sciences (No.YZ201640)+6 种基金the Project of the Chinese Academy of Sciences (No.KFZD-SW-409)Science and Technology Major Project of Ningbo (Nos.2016S1002 and 2016B10038)International S&T Cooperation Program of Ningbo (No. 2017D10016) for financial supportthe Chinese Academy of Sciences for Hundred Talents ProgramChinese Central Government for Thousand Young Talents Program3315 Program of Ningbothe Key Technology of Nuclear Energy (CAS Interdisciplinary Innovation Team,2014)
文摘With the rapid growth in electronic device performance,there has been an increasing demand for thermally conductive polymer composites to handle the thermal management issue,thus contributing to the great importance to develop the graphene framework,which is evaluated as the most promising reinforcements for enhancing the thermal conductivity of polymer.Vacuum filtration is a common method to fabricate graphene framework,whereas,it is available to prepare a framework with centimeter-scale thickness by filtrating the graphene-water dispersion,due to the fact of sample cracking caused by the mismatch of surface tension between graphene and water.In this work,a surfactantassisted strategy was proposed by adjusting the surface tension of the water close to that of graphene first,then performing a conventional filtration process,to fabricate graphene framework.As a result,a thick graphene framework(thickness:3 cm)was successfully prepared,and after embedding into epoxy,the framework endows the composite(13.6 wt%)with a high in-plane thermal conductivities of12.4 W/mK,which is equivalent to≈64 times higher than that of neat epoxy.Our method is simple and compatible with the conventional filtration process,suggesting great potential for the mass-production of graphene framework to meet the practical application requirements.
基金the National Natural Science Foundation of China(U1709205,52102055)the National Key R&D Program of China(2017YFE0128600)+7 种基金China Postdoctoral Science Foundation(2020M681965)the Project of the Chinese Academy of Sciences(XDC07030100,XDA22020602,KFZD-SW-409,ZDKYYQ20200001,and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association(2020301)Science and Technology Major Project of Ningbo(2018B10046)the Natural Science Foundation of Ningbo(2017A610010)Foundation of State Key Laboratory of Solid lubrication(LSL-1912)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(6142905192806)K.C.Wong Education Foundation(GJTD-2019-13).
文摘As the power density of electronic devices increases,there has been an urgent demand to develop highly conductive polymer composites to address the accompanying thermal management issues.Due to the ultra-high intrinsic thermal conductivity,graphene is considered a very promising filler to improve the thermal conductivity of polymers.However,graphene-based polymer composites prepared by the conventional mixing method generally have limited thermal conductivity,even under high graphene loading,due to the failure to construct efficient heat transfer pathways in the polymer matrix.Here,a spiral graphene framework(SGF)containing continuous and highly ordered graphene microtubes was developed based on a modified CVD method.After embedding into the epoxy(EP)matrix,the graphene microtubes can act as efficient heat pathways,endowing the SGF/EP composites with a high through-plane thermal conductivity of 1.35 W·m^(-1)·K^(-1) at an ultralow graphene loading of 0.86 wt%.This result gives a thermal conductivity enhancement per 1 wt%filler loading of 710%,significantly outperforming various graphene structures as fillers.In addition,we demonstrated the practical application of the SGF/EP composite as a thermal interface material for efficient thermal man-agement of the light-emitting diode(LED).
文摘Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consist- ing of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corre- sponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended sur- faces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.