期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Identification of the Hammerstein nonlinear system with noisy output measurements
1
作者 qiming zha Feng Li Ranran Liu 《Control Theory and Technology》 EI CSCD 2024年第2期203-212,共10页
In this research, we present a methodology to identify the Hammerstein nonlinear system with noisy output measurements. The Hammerstein system presented is comprised of neural fuzzy model (NFM) as its static nonlinear... In this research, we present a methodology to identify the Hammerstein nonlinear system with noisy output measurements. The Hammerstein system presented is comprised of neural fuzzy model (NFM) as its static nonlinear block and auto-regressive with extra input (ARX) model as its dynamic linear block, and a two-step procedure is accomplished using signal combination. In the first step, in the case of input–output of Gaussian signals, the correlation function-based least squares (CF-LS) technique is utilized to identify the linear block, solving the problem that the intermediate variable connecting nonlinear and linear blocks cannot be measured. In the second step, to improve the identification accuracy of the nonlinear block parameters, an improved particle swarm optimization technique is developed under input–output of random signals. The validity and accuracy of the presented scheme are verified by a numerical simulation and a practical nonlinear process, and the results illustrate that the proposed methodology can identify well the Hammerstein nonlinear system with noisy output measurements. 展开更多
关键词 Hammerstein nonlinear system Signal combination Auto-regressive with extra input Improved particle swarm optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部