Assume G is a finite group and H a subgroup of G. If there exists a subgroup K of G such that G = HK and H ∩ K = 1, then K is said to be a complement to H in G. A finite p-group G is called an NC-group if all its pro...Assume G is a finite group and H a subgroup of G. If there exists a subgroup K of G such that G = HK and H ∩ K = 1, then K is said to be a complement to H in G. A finite p-group G is called an NC-group if all its proper normal subgroups not contained in de(G) have complements. In this paper, some properties of NC-groups are investigated and some classes of NC-groups are classified. Keywords Finite p-groups, normal subgroups, subgroup complement展开更多
Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p^3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonme tacyclic of or...Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p^3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonme tacyclic of order p^3. In this paper, the P1-groups are classified, and as a by-product, we prove the Hughes' conjecture is true for the P1-groups.展开更多
Let G be a finite nonabelian group which has no abelian maximal subgroups and satisfies that any two non-commutative elements generate a maximal subgroup. Then G is isomorphic to the smallest Suzuki 2-group of order 64.
基金Supported by National Natural Science Foundation of China(Grant Nos.11471198,11501045 and 11371232)
文摘Assume G is a finite group and H a subgroup of G. If there exists a subgroup K of G such that G = HK and H ∩ K = 1, then K is said to be a complement to H in G. A finite p-group G is called an NC-group if all its proper normal subgroups not contained in de(G) have complements. In this paper, some properties of NC-groups are investigated and some classes of NC-groups are classified. Keywords Finite p-groups, normal subgroups, subgroup complement
基金Supported by National Natural Science Foundation of China(Grant Nos.11771258 and 11471198)
文摘Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p^3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonme tacyclic of order p^3. In this paper, the P1-groups are classified, and as a by-product, we prove the Hughes' conjecture is true for the P1-groups.
基金NSFC (No.10671114)NSF of Shanxi Province (No.20051007)the Returned Overseas(student) Fund of Shanxi province (No.[2007]13-56)
文摘Let G be a finite nonabelian group which has no abelian maximal subgroups and satisfies that any two non-commutative elements generate a maximal subgroup. Then G is isomorphic to the smallest Suzuki 2-group of order 64.