Pseudorabies(PR)is an acute infectious disease of pigs caused by the PR virus(PRV)and results in great economic losses to the pig industry worldwide.PRV glycoprotein E(gE)-based enzyme-linked immunosorbent assay(ELISA...Pseudorabies(PR)is an acute infectious disease of pigs caused by the PR virus(PRV)and results in great economic losses to the pig industry worldwide.PRV glycoprotein E(gE)-based enzyme-linked immunosorbent assay(ELISA)has been used to distinguish gE-deleted vaccine-immunized pigs from wild-type virus-infected pigs to eradicate PR in some countries.Nanobody has the advantages of small size and easy genetic engineering and has been a promising diagnostic reagent.However,there were few reports about developing nanobody-based ELISA for detecting anti-PRV-gE antibodies.In the present study,the recombinant PRV-gE was expressed with a bacterial system and used to immunize the Bactrian camel.Then,two nanobodies against PRV-gE were screened from the immunized camel by phage display technique.Subsequently,two nanobody-HRP fusion proteins were expressed with HEK293T cells.The PRV-gE-Nb36-HRP fusion protein was selected as the probe for developing the blocking ELISA(bELISA)to detect anti-PRV-gE antibodies.Through optimizing the conditions of bELISA,the amount of coated antigen was 200 ng per well,and dilutions of the fusion protein and tested pig sera were separately 1:320 and 1:5.The cut-off value of bELISA was 24.20%,and the sensitivity and specificity were 96.43 and 92.63%,respectively.By detecting 233 clinical pig sera with the developed bELISA and a commercial kit,the results showed that the coincidence rate of two assays was 93.99%.Additionallly,epitope mapping showed that PRV-gE-Nb36 recognized a conserved conformational epitope in different reference PRV strains.Simple,great stability and low-cost nanobody-based bELISA for detecting anti-PRV-gE antibodies were developed.The bELISA could be used for monitoring and eradicating PR.展开更多
Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in...Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption.CD301b^(+)macrophages are specific to the osteoimmunology microenvironment,and are emerging as vital booster for conducting bone regeneration.However,the key upstream targets of CD301b^(+)macrophages and their potential mechanism in periodontitis remain elusive.In this study,we concentrated on the role of Tim4,a latent upstream regulator of CD301b^(+)macrophages.We first demonstrated that the transcription level of Timd4(gene name of Tim4)in CD301b^(+)macrophages was significantly upregulated compared to CD301b^(-) macrophages via high-throughput RNA sequencing.Moreover,several Tim4-related functions such as apoptotic cell clearance,phagocytosis and engulfment were positively regulated by CD301b^(+)macrophages.The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages.The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b^(+)macrophages as periodontitis progressed.Furthermore,the deficiency of Tim4 in mice decreased CD301b^(+)macrophages and eventually magnified alveolar bone resorption in periodontitis.Additionally,Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b^(+)macrophages phenotype.In a word,Tim4 might regulate CD301b^(+)macrophages through p38 MAPK signaling pathway in periodontitis,which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.展开更多
Porcine reproductive and respiratory syndrome virus(PRRSV)infection causes significant economic loss to the global pig industry.Genotype 1 and 2 PRRSV(PRRSV-1 and-2)infections have been reported in China,Europe and Am...Porcine reproductive and respiratory syndrome virus(PRRSV)infection causes significant economic loss to the global pig industry.Genotype 1 and 2 PRRSV(PRRSV-1 and-2)infections have been reported in China,Europe and America.For accurate prevention,nanobodies were first used as diagnostic reagents for PRRSV typing.In this study three nanobodies targeting both PRRSV-1 and-2,two targeting PRRSV-1 and three targeting PRRSV-2,were screened and produced.To develop two competitive ELISAs(cELISAs),the g1-2-PRRSV-Nb3-HRP nanobody was chosen for the g1-2-cELISA,to detect common antibodies against PRRSV-1 and-2,and the g1-PRRSV-Nb136-HRP nanobody was chosen for the g1-cELISA,to detect anti-PRRSV-1 antibodies.The two cELISAs were developed using PRRSV-1-N protein as coating antigen,and the amounts for both were 100 ng/well.The optimized dilution of testing pig sera was 1:20,the optimized reaction times were 30 min,and the colorimetric reaction times were 15 min.Then,the cut-off values of the g1-2-cELISA and g1-cELISA were 26.6%and 35.6%,respectively.Both of them have high sensitivity,strong specificity,good repeatability,and stability.In addition,for the 1534 clinical pig sera,an agreement rate of 99.02%(Kappa values=0.97)was determined between the g1-2-cELISA and the commercial IDEXX ELISA kit.For the g1-cELSIA,it can specifically detect anti-PRRSV-1 antibodies in the clinical pig sera.Importantly,combining two nanobody-based cELISAs can differentially detect antibodies against PRRSV-1 and-2.展开更多
Young students are the future of our country and the hope of our nation.The healthy growth of young students must rely on independence and self-reliance.From the perspectives of family,society,and school,this article ...Young students are the future of our country and the hope of our nation.The healthy growth of young students must rely on independence and self-reliance.From the perspectives of family,society,and school,this article explores the cultivation of young students’spirit of independence and self-reliance,which should be grasped from three aspects:recognizing the situation,identifying the reasons,and taking effective measures.展开更多
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essen...Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials.Previous studies have mainly focused on innate immune cells such as macrophages.In our previous work,we found that T lymphocytes,as adaptive immune cells,are also essential in the osteoinduction procedure.As the most important antigen-presenting cell,whether dendritic cells(DCs)can recognize non-antigen biomaterials and participate in osteoinduction was still unclear.In this study,we found that surgical trauma associated with materials implantation induces necrocytosis,and this causes the release of high mobility group protein-1(HMGB1),which is adsorbed on the surface of bone substitute materials.Subsequently,HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells,and the inflammatory response was activated.Finally,activated DCs release regeneration-related chemokines,recruit mesenchymal stem cells,and initiate the osteoinduction process.This study sheds light on the immune-regeneration process after bone substitute materials implantation,points out a potential direction for the development of bone substitute materials,and provides guidance for the development of clinical surgical methods.展开更多
Periodontal bone regeneration is a major challenge in the treatment of periodontitis.Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed b...Periodontal bone regeneration is a major challenge in the treatment of periodontitis.Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation,via conventional treatment.CD301b^(+)macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment,but their role in periodontal bone repair has not been reported.展开更多
To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most importa...To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most important building materials in construction engineering,reinforcing bars(rebar)account for more than 30%of the cost in civil engineering.A significant amount of cutting waste is generated during the construction phase.Excessive cutting waste increases construction costs and generates a considerable amount of CO_(2)emission.This study aimed to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel bar engineering to realize sustainable construction.In the proposed algorithm,the integer linear programming algorithm was applied to solve the problem.It was combined with the statistical method,a greedy strategy was introduced,and a method for determining the dynamic critical threshold was developed to ensure the accuracy of large-scale data calculation.The proposed algorithm was verified through a case study;the results confirmed that the rebar loss rate of the proposed method was reduced by 9.124%compared with that of traditional distributed processing of steel bars,reducing CO_(2)emissions and saving construction costs.As the scale of a project increases,the calculation quality of the optimization algorithmfor steel bar blanking proposed also increases,while maintaining high calculation efficiency.When the results of this study are applied in practice,they can be used as a sustainable foundation for building informatization and intelligent development.展开更多
基金supported by the National Natural Science Foundation of China(32273041)the Key R&D Program of Shaanxi Province,China(2022NY-104)the Natural Science Foundation of Shaanxi Province,China(2022JC-12)。
文摘Pseudorabies(PR)is an acute infectious disease of pigs caused by the PR virus(PRV)and results in great economic losses to the pig industry worldwide.PRV glycoprotein E(gE)-based enzyme-linked immunosorbent assay(ELISA)has been used to distinguish gE-deleted vaccine-immunized pigs from wild-type virus-infected pigs to eradicate PR in some countries.Nanobody has the advantages of small size and easy genetic engineering and has been a promising diagnostic reagent.However,there were few reports about developing nanobody-based ELISA for detecting anti-PRV-gE antibodies.In the present study,the recombinant PRV-gE was expressed with a bacterial system and used to immunize the Bactrian camel.Then,two nanobodies against PRV-gE were screened from the immunized camel by phage display technique.Subsequently,two nanobody-HRP fusion proteins were expressed with HEK293T cells.The PRV-gE-Nb36-HRP fusion protein was selected as the probe for developing the blocking ELISA(bELISA)to detect anti-PRV-gE antibodies.Through optimizing the conditions of bELISA,the amount of coated antigen was 200 ng per well,and dilutions of the fusion protein and tested pig sera were separately 1:320 and 1:5.The cut-off value of bELISA was 24.20%,and the sensitivity and specificity were 96.43 and 92.63%,respectively.By detecting 233 clinical pig sera with the developed bELISA and a commercial kit,the results showed that the coincidence rate of two assays was 93.99%.Additionallly,epitope mapping showed that PRV-gE-Nb36 recognized a conserved conformational epitope in different reference PRV strains.Simple,great stability and low-cost nanobody-based bELISA for detecting anti-PRV-gE antibodies were developed.The bELISA could be used for monitoring and eradicating PR.
基金supported by the National Natural Science Foundation of China(82025011,82220108018,82270981,82100975,82201078)the National Key R&D Program of China(2021YFC2400405)+1 种基金the Fundamental Research Funds for the Central Universities(2042023kfyq022042022dx0003).
文摘Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption.CD301b^(+)macrophages are specific to the osteoimmunology microenvironment,and are emerging as vital booster for conducting bone regeneration.However,the key upstream targets of CD301b^(+)macrophages and their potential mechanism in periodontitis remain elusive.In this study,we concentrated on the role of Tim4,a latent upstream regulator of CD301b^(+)macrophages.We first demonstrated that the transcription level of Timd4(gene name of Tim4)in CD301b^(+)macrophages was significantly upregulated compared to CD301b^(-) macrophages via high-throughput RNA sequencing.Moreover,several Tim4-related functions such as apoptotic cell clearance,phagocytosis and engulfment were positively regulated by CD301b^(+)macrophages.The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages.The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b^(+)macrophages as periodontitis progressed.Furthermore,the deficiency of Tim4 in mice decreased CD301b^(+)macrophages and eventually magnified alveolar bone resorption in periodontitis.Additionally,Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b^(+)macrophages phenotype.In a word,Tim4 might regulate CD301b^(+)macrophages through p38 MAPK signaling pathway in periodontitis,which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.
基金funded by grants from the National Key R&D Program of China(2023YFD1800304)the National Natural Science Foundation of China to QZ(32273041)+1 种基金the Natural Science Foundation of Shaanxi Province of China(2022JC-12)the Central Public-interest Scientific Institution Basal Research Fund,National Data Center of Animal Health.
文摘Porcine reproductive and respiratory syndrome virus(PRRSV)infection causes significant economic loss to the global pig industry.Genotype 1 and 2 PRRSV(PRRSV-1 and-2)infections have been reported in China,Europe and America.For accurate prevention,nanobodies were first used as diagnostic reagents for PRRSV typing.In this study three nanobodies targeting both PRRSV-1 and-2,two targeting PRRSV-1 and three targeting PRRSV-2,were screened and produced.To develop two competitive ELISAs(cELISAs),the g1-2-PRRSV-Nb3-HRP nanobody was chosen for the g1-2-cELISA,to detect common antibodies against PRRSV-1 and-2,and the g1-PRRSV-Nb136-HRP nanobody was chosen for the g1-cELISA,to detect anti-PRRSV-1 antibodies.The two cELISAs were developed using PRRSV-1-N protein as coating antigen,and the amounts for both were 100 ng/well.The optimized dilution of testing pig sera was 1:20,the optimized reaction times were 30 min,and the colorimetric reaction times were 15 min.Then,the cut-off values of the g1-2-cELISA and g1-cELISA were 26.6%and 35.6%,respectively.Both of them have high sensitivity,strong specificity,good repeatability,and stability.In addition,for the 1534 clinical pig sera,an agreement rate of 99.02%(Kappa values=0.97)was determined between the g1-2-cELISA and the commercial IDEXX ELISA kit.For the g1-cELSIA,it can specifically detect anti-PRRSV-1 antibodies in the clinical pig sera.Importantly,combining two nanobody-based cELISAs can differentially detect antibodies against PRRSV-1 and-2.
文摘Young students are the future of our country and the hope of our nation.The healthy growth of young students must rely on independence and self-reliance.From the perspectives of family,society,and school,this article explores the cultivation of young students’spirit of independence and self-reliance,which should be grasped from three aspects:recognizing the situation,identifying the reasons,and taking effective measures.
基金supported by the Beijing Training Project for the Leading Talents in S&T(Grant No.Z191100006119022)the National Key Program of the National Natural Science Foundation of China(Grant No.51705006)Capital’s Funds for Health Improvement and Research(2022-2Z-4106).
文摘Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials.Previous studies have mainly focused on innate immune cells such as macrophages.In our previous work,we found that T lymphocytes,as adaptive immune cells,are also essential in the osteoinduction procedure.As the most important antigen-presenting cell,whether dendritic cells(DCs)can recognize non-antigen biomaterials and participate in osteoinduction was still unclear.In this study,we found that surgical trauma associated with materials implantation induces necrocytosis,and this causes the release of high mobility group protein-1(HMGB1),which is adsorbed on the surface of bone substitute materials.Subsequently,HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells,and the inflammatory response was activated.Finally,activated DCs release regeneration-related chemokines,recruit mesenchymal stem cells,and initiate the osteoinduction process.This study sheds light on the immune-regeneration process after bone substitute materials implantation,points out a potential direction for the development of bone substitute materials,and provides guidance for the development of clinical surgical methods.
基金supported by the National Natural Science Foundation of China(82025011,82220108018,82100975,82270981)the Fundamental Research Funds for the Central Universities(2042021kf0181)。
文摘Periodontal bone regeneration is a major challenge in the treatment of periodontitis.Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation,via conventional treatment.CD301b^(+)macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment,but their role in periodontal bone repair has not been reported.
基金funded by Nature Science Foundation of China(51878556)the Key Scientific Research Projects of Shaanxi Provincial Department of Education(20JY049)+1 种基金Key Research and Development Program of Shaanxi Province(2019TD-014)State Key Laboratory of Rail Transit Engineering Informatization(FSDI)(SKLKZ21-03).
文摘To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most important building materials in construction engineering,reinforcing bars(rebar)account for more than 30%of the cost in civil engineering.A significant amount of cutting waste is generated during the construction phase.Excessive cutting waste increases construction costs and generates a considerable amount of CO_(2)emission.This study aimed to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel bar engineering to realize sustainable construction.In the proposed algorithm,the integer linear programming algorithm was applied to solve the problem.It was combined with the statistical method,a greedy strategy was introduced,and a method for determining the dynamic critical threshold was developed to ensure the accuracy of large-scale data calculation.The proposed algorithm was verified through a case study;the results confirmed that the rebar loss rate of the proposed method was reduced by 9.124%compared with that of traditional distributed processing of steel bars,reducing CO_(2)emissions and saving construction costs.As the scale of a project increases,the calculation quality of the optimization algorithmfor steel bar blanking proposed also increases,while maintaining high calculation efficiency.When the results of this study are applied in practice,they can be used as a sustainable foundation for building informatization and intelligent development.