Conventional photoluminescence(PL)yields at most one emitted photon for each absorption event.Downconversion(or quantum cutting)materials can yield more than one photon by virtue of energy transfer processes between l...Conventional photoluminescence(PL)yields at most one emitted photon for each absorption event.Downconversion(or quantum cutting)materials can yield more than one photon by virtue of energy transfer processes between luminescent centers.In this work,we introduce Gd2O2S:Tm^(3+) as a multi-photon quantum cutter.It can convert near-infrared,visible,or ultraviolet photons into two,three,or four infrared photons of,1800 nm,respectively.The cross-relaxation steps between Tm^(3+) ions that lead to quantum cutting are identified from(time-resolved)PL as a function of the Tm^(3+) concentration in the crystal.A model is presented that reproduces the way in which the Tm^(3+) concentration affects both the relative intensities of the various emission lines and the excited state dynamics and providing insight in the quantum cutting efficiency.Finally,we discuss the potential application of Gd2O2S:Tm^(3+) for spectral conversion to improve the efficiency of next-generation photovoltaics.展开更多
基金Financial support from the National Science Foundation of China(51125005 and 51472088)is gratefully acknowledgedDechao Yu thanks the China Scholarship Council(CSC,File No.201206150022)for a scholarshipThis work is part of the research program of the‘Stichting voor Fundamenteel Onderzoek der Materie(FOM)’,which is financially supported by the‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO)’.
文摘Conventional photoluminescence(PL)yields at most one emitted photon for each absorption event.Downconversion(or quantum cutting)materials can yield more than one photon by virtue of energy transfer processes between luminescent centers.In this work,we introduce Gd2O2S:Tm^(3+) as a multi-photon quantum cutter.It can convert near-infrared,visible,or ultraviolet photons into two,three,or four infrared photons of,1800 nm,respectively.The cross-relaxation steps between Tm^(3+) ions that lead to quantum cutting are identified from(time-resolved)PL as a function of the Tm^(3+) concentration in the crystal.A model is presented that reproduces the way in which the Tm^(3+) concentration affects both the relative intensities of the various emission lines and the excited state dynamics and providing insight in the quantum cutting efficiency.Finally,we discuss the potential application of Gd2O2S:Tm^(3+) for spectral conversion to improve the efficiency of next-generation photovoltaics.