As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-ener...As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.展开更多
Sustainable metal-air batteries demand high-efficiency,environmentally-friendly,and non-precious metal-based electrocatalysts with bifunctionality for both the oxygen reduction reaction(ORR)and oxygen evolution reacti...Sustainable metal-air batteries demand high-efficiency,environmentally-friendly,and non-precious metal-based electrocatalysts with bifunctionality for both the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).In this research,novel functional carbon nanotubes with multi-active sites including well-dispersed single-atom iron throughout the walls and encapsulated ultrafine iron nanoparticles were synthesized as an electrocatalyst(FeNP@Fe-N-C)through one-step pyrolysis of metal-organic frameworks.High-resolution synchrotron powder X-ray diffraction and X-ray absorption spectroscopy were applied to characterize the unique structure of the electrocatalyst.In comparison to the commercial Pt/C and Ru O_(2)electrodes,the newly prepared FeNP@Fe-N-C presented a superb bifunctional performance with its narrow potential difference(Egap)of 0.73 V,which is ascribed to the metallic Fe nanoparticles that boosts the adsorption and activation of oxygen on the active sites with an enhanced O_(2)adsorption capacity of 7.88 cm^(3)g^(-1)and synergistically functionalizes the iron atoms dispersed on the nanotubes.A rechargeable zinc-air battery based on FeNP@Fe-N-C exhibited a superior open-circuit voltage(1.45 V),power density(106.5 m W cm^(-2)),and stable cycling performance.The green technique developed in this work for the fabrication of functional nanotubes raises the prospect of making more efficient electrocatalysts for sustainable energy cells.展开更多
Owing to the environmental and inherent advantages,nitrogen reduction reaction(NRR)by electrocatalysts attracts global attention.The surface engineering is widely employed to enhance the electrocatalytic activity by a...Owing to the environmental and inherent advantages,nitrogen reduction reaction(NRR)by electrocatalysts attracts global attention.The surface engineering is widely employed to enhance the electrocatalytic activity by atomic defects and heterostructure effects.A three-dimensional(3D)free-standing integrated electrode was fabricated by numerous nearly-single-crystal TiO_(2-δ)N_δnanowire arrays.Based on the high electronic conductivity network,it exposes numerous active sites as well to facilitate the selective nitrogen adsorption and*H adsorption suppression.The synergistic effects between Ti^(3+)and oxygen vacancy(O_v)boost the intrinsic catalytic activity,in which Ti^(3+)acquired electrons via Ovcan effectively activate the N≡N bond and make it easy to bind with protons.The energy barrier of primary protonation process(*N_(2)+H^(+)+e^(-)→*NNH)can be dramatically decreased.The highest ammonia yield rate(14.33μg h^(-1)mgcat^(-1))emerges at-0.2 V,while the optimal ammonia Faradaic efficiency(9.17%)is acquired at-0.1 V.Density functional theory(DFT)calculation reveals that the Ti^(3+)can be served as the active sites for nitrogen adsorption and activation,while ammonia synthesis is accomplished by the distal pathway.The high electronic conductivity integrated network and synergistic effects can significantly facilitate nitrogen absorption and accelerate electrocatalytic reaction kinetic,which are responsible for the excellent NRR performance at room temperature.展开更多
Ino rganic tubular materials have an exceptionally wide range of applications,yet developing a simple and universal method to controllably synthesize them remains challenging.In this work,we report a vaporphase-etchin...Ino rganic tubular materials have an exceptionally wide range of applications,yet developing a simple and universal method to controllably synthesize them remains challenging.In this work,we report a vaporphase-etching hard-template method that can directly fabricate tubes on various thermally stable oxide and sulfide materials.This synthesis method features the introduction of a vapor-phase-etching process to greatly simplify the steps involved in preparing tubular materials and avoids complicated postprocessing procedures.Furthermore,the in-situ heating transmission electron microscopy(TEM)technique is used to observe the dynamic formation process of TiO_(2-x) tubes,indicating that the removal process of the Sb2S3 templates first experienced the Rayleigh instability,then vapor-phase-etching process.When used as an anode for sodium ion batteries,the TiO_(2-x) tube exhibits excellent rate performance of134.6 mA h g^(-1) at the high current density of 10 A g^(-1) and long-term cycling over 7000 cycles.Moreover,the full cell demonstrates excellent cycling performance with capacity retention of 98%after 1000 cycles,indicating that it is a promising anode material for batteries.This method can be expanded to the design and synthesis of other thermally-stable tubular materials such as ZnS,MoS_(2),and SiO_(2).展开更多
The negative thermal expansion(NTE) phenomenon is of great significance in fabricating zero thermal expansion(ZTE) materials to avoid thermal shock during heating and cooling. NTE is observed in limited groups of mate...The negative thermal expansion(NTE) phenomenon is of great significance in fabricating zero thermal expansion(ZTE) materials to avoid thermal shock during heating and cooling. NTE is observed in limited groups of materials, e.g., metal cyanides, oxometallates, and metalorganic frameworks, but has not been reported in the family of metal hydrides. Herein, a colossal and continuous negative thermal expansion is firstly developed in the low-temperature phases of LT1-and LT2-Mg_(2)NiH_(4) between 488 K and 733 K from in-situ transmission electron microscope(TEM) video, with the volume contraction reaching 18.7% and 11.3%, respectively. The mechanisms for volume contraction of LT1 and LT2 phases are elucidated from the viewpoints of phase transformation, magnetic transition, and dehydrogenation, which is different from common NTE materials containing flexible polyhedra units in the structure. The linear volume shrinkage of LT2 in the temperature of 488-553 K corresponds to the phase transition of LT2→HT with a thermal expansion coefficient of -799.7 × 10^(-6) K^(-1) revealed by in-situ synchrotron powder X-ray diffraction. The sudden volume contraction in LT1 between 488 and 493 K may be caused by the rapid dehydrogenation of LT1 to Mg_(2)Ni. The revealed phenomenon in single composite material with different structures would be significant for preparing zero thermal expansion materials by tuning the fraction of LT1 and LT2 phases.展开更多
The changes in the crystal structures of synthetically prepared amorphous calcium phosphate(ACP) and hydroxyapatite(HAP) in water(1:1 mass ratio) were studied by synchrotron X-ray diffraction(XRD) under ultra...The changes in the crystal structures of synthetically prepared amorphous calcium phosphate(ACP) and hydroxyapatite(HAP) in water(1:1 mass ratio) were studied by synchrotron X-ray diffraction(XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.展开更多
Rechargeable sodium–oxygen(Na-O_(2))and sodium–carbon dioxide(Na-CO_(2))batteries have attracted intensive research attention in recent years owing to their advantages of high theoretical energy density,modest cost,...Rechargeable sodium–oxygen(Na-O_(2))and sodium–carbon dioxide(Na-CO_(2))batteries have attracted intensive research attention in recent years owing to their advantages of high theoretical energy density,modest cost,abundance of sodium resources,and promising potential for achieving real sodium–air batteries in large-scale energy storage systems.Nevertheless,current research on Na-O_(2)and Na-CO_(2)batteries is facing enormous challenges,such as low energy efficiency and limited cycle life,which are restricting their progress at the initial stage.Therefore,understanding their working principles,and the chemical and electrochemical reactions of the electrodes is indispensable to achieve their practical application and even the goal of true sodium–air batteries.This review aims to provide an overview of the research developments and future perspectives on Na-O_(2)and Na-CO_(2)batteries,which include the major aspects,such as working mechanisms,air cathode materials design strategies,sodium anode protection,and electrolyte stability.Moreover,the remaining issues and future research directions are also thoroughly discussed and presented.展开更多
Potassium metal batteries(PMBs)have become a paramount alternative energy storage technology to lithium-ion batteries,due to their low cost and potential energy density.However,uncontrolled dendrite growth interferes ...Potassium metal batteries(PMBs)have become a paramount alternative energy storage technology to lithium-ion batteries,due to their low cost and potential energy density.However,uncontrolled dendrite growth interferes with the stability of the interfacial anode,leading to significant capacity degradation and safety hazards.Herein,a facile reactive prewetting strategy is proposed to discourage dendrite growth by constructing a functional KF/Znrich hybrid interface layer on K metal.The KF/Zn@K anode design functions like an interconnected paddy field,stabilizing the anode interface through the preferential redistribution of Kþflux/electrons,continuous transport paths,and enhanced transport dynamics.As anticipated,symmetrical batteries exhibit an extended cycling lifetime of over 2000 h,with reduced voltage hysteresis at 0.5 mA cm^(-2) and 0.5 mAh cm^(-2).Furthermore,when the KF/Zn@K anode is applied to full batteries coupled with PTCDA,a boosted reversible capacity of 61.6 mAh g1 at 5 C is present over 3000 cycles.This interfacial control creates rational possibilities for constructing highefficiency,stable K metal anodes.展开更多
A hitherto unreported long-period stacking-ordered(LPSO) phase, designated 12 R, was observed in a Mg80Ni5Y15(at.%) alloy. Microstructure was investigated by electron diffraction and high-angle annular dark-field scan...A hitherto unreported long-period stacking-ordered(LPSO) phase, designated 12 R, was observed in a Mg80Ni5Y15(at.%) alloy. Microstructure was investigated by electron diffraction and high-angle annular dark-field scanning transmission electron microscopy. Results show that the 12 R has a trigonal lattice(a = b = 1.112 nm, c = 3.126 nm, α = β = 90°, and γ = 120°). Unit cell of the 12 R is consisted of three ABCAtype building blocks and each building block contains dominant Ni6Y8-type building clusters. A sound structural model is proposed based on relative positions of Ni6Y8clusters in neighboring building blocks.展开更多
Thermal-mechanical processing of magnesium-based materials is an effective method to tailor the hydrogen storage performance.In this study,Mg-Ni-Gd-Y-Zn-Cu alloys were prepared by Direct Chill(DC)casting,with and with...Thermal-mechanical processing of magnesium-based materials is an effective method to tailor the hydrogen storage performance.In this study,Mg-Ni-Gd-Y-Zn-Cu alloys were prepared by Direct Chill(DC)casting,with and without extrusion process.The influences of microstructure evolution,introduced by DC casting and thermal-mechanical processing,on the hydrogen storage performance of Mg-Ni-Gd-Y-ZnCu alloys were comprehensively explored,using analytical electron microscopy and in-situ synchrotron powder X-ray diffraction.The result shows that the extruded alloy yields higher hydrogen absorption capacity and faster hydrogen ab/desorption kinetics.As subjected to extrusion processing,theα-Mg grains in the microstructure were significantly refined and a large number of 14H type long-period stacking ordered(LPSO)phases appeared on theα-Mg matrix.After activation,there were more nanosized Gd hydride/Mg2Ni intermetallics and finer chips.These modifications synergistically enhance the hydrogen storage properties.The findings have implications for the alloy design and manufacturing of magnesiumbased hydrogen storage materials with the advantages of rapid mass production and anti-oxidation.展开更多
Photocatalysis is considered as one of the most promising technologies to generate renewable energy and degrade environmental pollutants.Tremendous efforts have been made to improve photocatalytic efficiency.Among the...Photocatalysis is considered as one of the most promising technologies to generate renewable energy and degrade environmental pollutants.Tremendous efforts have been made to improve photocatalytic efficiency.Among these,tuning spin polarization and introducing an external magnetic field are considered two promising strategies to boost photocatalytic performance.Herein this review highlights the recent breakthroughs through manipulating spin states and applying external magnetic fields for enhancing photocatalytic reactions.The relevant characterization techniques and fundamental mechanisms are summarized.Spin polarization states of photocatalysts have received considerable attention due to their unique roles,including inhibiting the recombination of photoexcited carriers owing to spin orientation constraint,enhancing the reaction product selectivity,and reducing the reaction barriers via optimizing the absorption energy and binding strength.As for the effects of external magnetic field on photocatalytic performance,we mainly discuss the separation enhancement of photoinduced carriers under static and time-varying magnetic fields and the magneto-hydrodynamic effect of charged particles.Lastly,the negative magnetoresistance effect is discussed due to the synergistic effects of the electron spin state and an external magnetic field.These discussions in this review may provide new insights into designing new semiconductors for boosting photocatalytic performance in internal and external magnetic fields.展开更多
Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction(OER)catalysts due to the faster mass transfer and better charge carrying ability.Herein,an exquisite high nitr...Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction(OER)catalysts due to the faster mass transfer and better charge carrying ability.Herein,an exquisite high nitrogen-containing ligand was designed and readily synthesized from the low-cost biomolecule adenine.Accordingly,three new MOFs(TJU-103,TJU-104 and TJU-105)were prepared using the Co(II)or Mn(II)ions as metal nodes.Through rationally controlling pyrolysis condition,in virtue of the high nitrogen content in well-defined periodic structure of the pristine MOFs,TJU-104–900 among the derived MOFs with hierarchical porous structure,i.e.,N-doped graphitic carbon encapsulating homogeneously distributed cobalt nanoparticles,could be conveniently obtained.Thanks to the synergistic effect of the hierarchical structure and well dispersed active components(i.e.,C=O,Co–Nx,graphitic C and N,pyridinic N),it could exhibit an overpotential of 280 mV@10mA/cm^(2)on carbon cloth for OER activity.This work provides the inspiration for fabrication of nitrogen-doped carbon/metal electrocatalysts from cost-effective and abundant biomolecules,which is promising for practical OER application.展开更多
It is widely accepted that further development of Pb-free solder alloys for improved processing and in-service properties of next-generation electronics,can be accelerated through a fundamental understanding of phase ...It is widely accepted that further development of Pb-free solder alloys for improved processing and in-service properties of next-generation electronics,can be accelerated through a fundamental understanding of phase transformation and microstructure control in Pb-free solder joints.Advanced characterization techniques including synchrotron radiation provide a comprehensive toolset to measure the composition,crystallography,morphology,and properties of the major components of solder alloys.The research using such techniques is reviewed in detail including the characterization of the eff ects of microalloy additions on the microstructure and properties of Pb-free solder joints,especially those on the intermetallic phases.The discoveries outlined are of scientific and industrial relevance and have implications for new solder alloy composition design and the reliability of lead-free solder joints.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52272194)LiaoNing Revitalization Talents Program(Grant No.XLYC2007155)。
文摘As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.
基金financially supported by grants 17210219 and T21-711/16R from the Research Grants Council of the Hong Kong governmentproject 51978369 from the National Natural Science Foundation of China。
文摘Sustainable metal-air batteries demand high-efficiency,environmentally-friendly,and non-precious metal-based electrocatalysts with bifunctionality for both the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).In this research,novel functional carbon nanotubes with multi-active sites including well-dispersed single-atom iron throughout the walls and encapsulated ultrafine iron nanoparticles were synthesized as an electrocatalyst(FeNP@Fe-N-C)through one-step pyrolysis of metal-organic frameworks.High-resolution synchrotron powder X-ray diffraction and X-ray absorption spectroscopy were applied to characterize the unique structure of the electrocatalyst.In comparison to the commercial Pt/C and Ru O_(2)electrodes,the newly prepared FeNP@Fe-N-C presented a superb bifunctional performance with its narrow potential difference(Egap)of 0.73 V,which is ascribed to the metallic Fe nanoparticles that boosts the adsorption and activation of oxygen on the active sites with an enhanced O_(2)adsorption capacity of 7.88 cm^(3)g^(-1)and synergistically functionalizes the iron atoms dispersed on the nanotubes.A rechargeable zinc-air battery based on FeNP@Fe-N-C exhibited a superior open-circuit voltage(1.45 V),power density(106.5 m W cm^(-2)),and stable cycling performance.The green technique developed in this work for the fabrication of functional nanotubes raises the prospect of making more efficient electrocatalysts for sustainable energy cells.
基金financially supported by the Liao Ning Revitalization Talents Program(XLYC2007155)the Fundamental Research Funds for the Central Universities(N2025018,N2025009)。
文摘Owing to the environmental and inherent advantages,nitrogen reduction reaction(NRR)by electrocatalysts attracts global attention.The surface engineering is widely employed to enhance the electrocatalytic activity by atomic defects and heterostructure effects.A three-dimensional(3D)free-standing integrated electrode was fabricated by numerous nearly-single-crystal TiO_(2-δ)N_δnanowire arrays.Based on the high electronic conductivity network,it exposes numerous active sites as well to facilitate the selective nitrogen adsorption and*H adsorption suppression.The synergistic effects between Ti^(3+)and oxygen vacancy(O_v)boost the intrinsic catalytic activity,in which Ti^(3+)acquired electrons via Ovcan effectively activate the N≡N bond and make it easy to bind with protons.The energy barrier of primary protonation process(*N_(2)+H^(+)+e^(-)→*NNH)can be dramatically decreased.The highest ammonia yield rate(14.33μg h^(-1)mgcat^(-1))emerges at-0.2 V,while the optimal ammonia Faradaic efficiency(9.17%)is acquired at-0.1 V.Density functional theory(DFT)calculation reveals that the Ti^(3+)can be served as the active sites for nitrogen adsorption and activation,while ammonia synthesis is accomplished by the distal pathway.The high electronic conductivity integrated network and synergistic effects can significantly facilitate nitrogen absorption and accelerate electrocatalytic reaction kinetic,which are responsible for the excellent NRR performance at room temperature.
基金financial support from the National Natural Science Foundation of China(21971146 and 22272093)the Taishan Scholarship Fund in Shandong Provinces(ts201511004)+2 种基金the Natural Science Foundation of Shandong Province(ZR2021MB127)the operational support of ANSTO staff for synchrotron-based characterizations(Awarded beamtime:AS212/PD/17323)the support from the Australian Research Council(ARC)(DE200101384 and LP180100722)。
文摘Ino rganic tubular materials have an exceptionally wide range of applications,yet developing a simple and universal method to controllably synthesize them remains challenging.In this work,we report a vaporphase-etching hard-template method that can directly fabricate tubes on various thermally stable oxide and sulfide materials.This synthesis method features the introduction of a vapor-phase-etching process to greatly simplify the steps involved in preparing tubular materials and avoids complicated postprocessing procedures.Furthermore,the in-situ heating transmission electron microscopy(TEM)technique is used to observe the dynamic formation process of TiO_(2-x) tubes,indicating that the removal process of the Sb2S3 templates first experienced the Rayleigh instability,then vapor-phase-etching process.When used as an anode for sodium ion batteries,the TiO_(2-x) tube exhibits excellent rate performance of134.6 mA h g^(-1) at the high current density of 10 A g^(-1) and long-term cycling over 7000 cycles.Moreover,the full cell demonstrates excellent cycling performance with capacity retention of 98%after 1000 cycles,indicating that it is a promising anode material for batteries.This method can be expanded to the design and synthesis of other thermally-stable tubular materials such as ZnS,MoS_(2),and SiO_(2).
基金supported by the National Key Research and Development Program of China (2021YFB3701001)the National Natural Science Foundation of China (51871143)+1 种基金Shanghai Engineering Research Center for Metal Parts Green Remanufacture (No.19DZ2252900) from Shanghai Engineering Research Center Construction ProjectShanghai Rising-Star Program (21QA1403200)。
文摘The negative thermal expansion(NTE) phenomenon is of great significance in fabricating zero thermal expansion(ZTE) materials to avoid thermal shock during heating and cooling. NTE is observed in limited groups of materials, e.g., metal cyanides, oxometallates, and metalorganic frameworks, but has not been reported in the family of metal hydrides. Herein, a colossal and continuous negative thermal expansion is firstly developed in the low-temperature phases of LT1-and LT2-Mg_(2)NiH_(4) between 488 K and 733 K from in-situ transmission electron microscope(TEM) video, with the volume contraction reaching 18.7% and 11.3%, respectively. The mechanisms for volume contraction of LT1 and LT2 phases are elucidated from the viewpoints of phase transformation, magnetic transition, and dehydrogenation, which is different from common NTE materials containing flexible polyhedra units in the structure. The linear volume shrinkage of LT2 in the temperature of 488-553 K corresponds to the phase transition of LT2→HT with a thermal expansion coefficient of -799.7 × 10^(-6) K^(-1) revealed by in-situ synchrotron powder X-ray diffraction. The sudden volume contraction in LT1 between 488 and 493 K may be caused by the rapid dehydrogenation of LT1 to Mg_(2)Ni. The revealed phenomenon in single composite material with different structures would be significant for preparing zero thermal expansion materials by tuning the fraction of LT1 and LT2 phases.
基金funded through an FRDF funding (Grant 3702239) provided by the University of Auckland, New Zealand
文摘The changes in the crystal structures of synthetically prepared amorphous calcium phosphate(ACP) and hydroxyapatite(HAP) in water(1:1 mass ratio) were studied by synchrotron X-ray diffraction(XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.
基金financially supported by an Australian Research Council(ARC)Discovery Project(DP180101453)
文摘Rechargeable sodium–oxygen(Na-O_(2))and sodium–carbon dioxide(Na-CO_(2))batteries have attracted intensive research attention in recent years owing to their advantages of high theoretical energy density,modest cost,abundance of sodium resources,and promising potential for achieving real sodium–air batteries in large-scale energy storage systems.Nevertheless,current research on Na-O_(2)and Na-CO_(2)batteries is facing enormous challenges,such as low energy efficiency and limited cycle life,which are restricting their progress at the initial stage.Therefore,understanding their working principles,and the chemical and electrochemical reactions of the electrodes is indispensable to achieve their practical application and even the goal of true sodium–air batteries.This review aims to provide an overview of the research developments and future perspectives on Na-O_(2)and Na-CO_(2)batteries,which include the major aspects,such as working mechanisms,air cathode materials design strategies,sodium anode protection,and electrolyte stability.Moreover,the remaining issues and future research directions are also thoroughly discussed and presented.
基金supported by the National Natural Science Foundation of China(Grant No.52272194)LiaoNing Revitalization Talents Program(Grant No.XLYC2007155).
文摘Potassium metal batteries(PMBs)have become a paramount alternative energy storage technology to lithium-ion batteries,due to their low cost and potential energy density.However,uncontrolled dendrite growth interferes with the stability of the interfacial anode,leading to significant capacity degradation and safety hazards.Herein,a facile reactive prewetting strategy is proposed to discourage dendrite growth by constructing a functional KF/Znrich hybrid interface layer on K metal.The KF/Zn@K anode design functions like an interconnected paddy field,stabilizing the anode interface through the preferential redistribution of Kþflux/electrons,continuous transport paths,and enhanced transport dynamics.As anticipated,symmetrical batteries exhibit an extended cycling lifetime of over 2000 h,with reduced voltage hysteresis at 0.5 mA cm^(-2) and 0.5 mAh cm^(-2).Furthermore,when the KF/Zn@K anode is applied to full batteries coupled with PTCDA,a boosted reversible capacity of 61.6 mAh g1 at 5 C is present over 3000 cycles.This interfacial control creates rational possibilities for constructing highefficiency,stable K metal anodes.
基金financially supported by the National Natural Foundation China(51671118)the Science and Technology Commission of Shanghai Municipality(16520721800 and 16DZ2260601)+2 种基金Young Elite Scientists Sponsorship Program By CAST(2017QNRC001)the “111” projects(D16002 and D17002)Program for Professor of Special Appointment(Eastern Scholar)by Shanghai Municipal Education Commission(No.TP2015040)
文摘A hitherto unreported long-period stacking-ordered(LPSO) phase, designated 12 R, was observed in a Mg80Ni5Y15(at.%) alloy. Microstructure was investigated by electron diffraction and high-angle annular dark-field scanning transmission electron microscopy. Results show that the 12 R has a trigonal lattice(a = b = 1.112 nm, c = 3.126 nm, α = β = 90°, and γ = 120°). Unit cell of the 12 R is consisted of three ABCAtype building blocks and each building block contains dominant Ni6Y8-type building clusters. A sound structural model is proposed based on relative positions of Ni6Y8clusters in neighboring building blocks.
基金synchrotron PXRD experiment was conducted at the Powder Diffraction beamline,ANSTO Australian Synchrotron under proposal Nos.AS211/PD/16842 and AS221/PD/17948G.Z.acknowledges the funding from the National Natural Science Foundation of China(No.51904352)Scientific Research Foundation of Hunan Provincial Education Department,China(No.22A0004)。
文摘Thermal-mechanical processing of magnesium-based materials is an effective method to tailor the hydrogen storage performance.In this study,Mg-Ni-Gd-Y-Zn-Cu alloys were prepared by Direct Chill(DC)casting,with and without extrusion process.The influences of microstructure evolution,introduced by DC casting and thermal-mechanical processing,on the hydrogen storage performance of Mg-Ni-Gd-Y-ZnCu alloys were comprehensively explored,using analytical electron microscopy and in-situ synchrotron powder X-ray diffraction.The result shows that the extruded alloy yields higher hydrogen absorption capacity and faster hydrogen ab/desorption kinetics.As subjected to extrusion processing,theα-Mg grains in the microstructure were significantly refined and a large number of 14H type long-period stacking ordered(LPSO)phases appeared on theα-Mg matrix.After activation,there were more nanosized Gd hydride/Mg2Ni intermetallics and finer chips.These modifications synergistically enhance the hydrogen storage properties.The findings have implications for the alloy design and manufacturing of magnesiumbased hydrogen storage materials with the advantages of rapid mass production and anti-oxidation.
基金the National Natural Science Foundation of China(Nos.61774055,51871138,and U2102212)the Science and Technology Committee of Shanghai(No.19010500400)。
文摘Photocatalysis is considered as one of the most promising technologies to generate renewable energy and degrade environmental pollutants.Tremendous efforts have been made to improve photocatalytic efficiency.Among these,tuning spin polarization and introducing an external magnetic field are considered two promising strategies to boost photocatalytic performance.Herein this review highlights the recent breakthroughs through manipulating spin states and applying external magnetic fields for enhancing photocatalytic reactions.The relevant characterization techniques and fundamental mechanisms are summarized.Spin polarization states of photocatalysts have received considerable attention due to their unique roles,including inhibiting the recombination of photoexcited carriers owing to spin orientation constraint,enhancing the reaction product selectivity,and reducing the reaction barriers via optimizing the absorption energy and binding strength.As for the effects of external magnetic field on photocatalytic performance,we mainly discuss the separation enhancement of photoinduced carriers under static and time-varying magnetic fields and the magneto-hydrodynamic effect of charged particles.Lastly,the negative magnetoresistance effect is discussed due to the synergistic effects of the electron spin state and an external magnetic field.These discussions in this review may provide new insights into designing new semiconductors for boosting photocatalytic performance in internal and external magnetic fields.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21875165,22272118)the Fundamental Research Funds for the Central Universities(No.22120210529)+1 种基金the Science and Technology Commission of Shanghai Municipality,China(Nos.22ZR1464100,19DZ2271500)the Recruitment Program of Global Experts of China,and Research Grants from the City University of Hong Kong(Nos.CityU 11308420,6000716,9667217).
文摘Nitrogen-doped carbon catalysts with hierarchical porous structure are promising oxygen evolution reaction(OER)catalysts due to the faster mass transfer and better charge carrying ability.Herein,an exquisite high nitrogen-containing ligand was designed and readily synthesized from the low-cost biomolecule adenine.Accordingly,three new MOFs(TJU-103,TJU-104 and TJU-105)were prepared using the Co(II)or Mn(II)ions as metal nodes.Through rationally controlling pyrolysis condition,in virtue of the high nitrogen content in well-defined periodic structure of the pristine MOFs,TJU-104–900 among the derived MOFs with hierarchical porous structure,i.e.,N-doped graphitic carbon encapsulating homogeneously distributed cobalt nanoparticles,could be conveniently obtained.Thanks to the synergistic effect of the hierarchical structure and well dispersed active components(i.e.,C=O,Co–Nx,graphitic C and N,pyridinic N),it could exhibit an overpotential of 280 mV@10mA/cm^(2)on carbon cloth for OER activity.This work provides the inspiration for fabrication of nitrogen-doped carbon/metal electrocatalysts from cost-effective and abundant biomolecules,which is promising for practical OER application.
基金the funding from the National Natural Science Foundation of China(No.51904352)the Natural Science Foundation of Hunan Province(No.2020JJ5758)+3 种基金the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP201904)funding from the University of Queensland-Nihon Superior Collaborative Research Programme(Grant No.2016001895)the Australian Research Council(ARC)Discovery(DP200101949)and Linkage(LP180100595)grantsthe financial support from JSPS KAKENHI(Grant No.JP17H06155)。
文摘It is widely accepted that further development of Pb-free solder alloys for improved processing and in-service properties of next-generation electronics,can be accelerated through a fundamental understanding of phase transformation and microstructure control in Pb-free solder joints.Advanced characterization techniques including synchrotron radiation provide a comprehensive toolset to measure the composition,crystallography,morphology,and properties of the major components of solder alloys.The research using such techniques is reviewed in detail including the characterization of the eff ects of microalloy additions on the microstructure and properties of Pb-free solder joints,especially those on the intermetallic phases.The discoveries outlined are of scientific and industrial relevance and have implications for new solder alloy composition design and the reliability of lead-free solder joints.