CaC12 can be sprayed onto sinter surface, which can improve the low temperature reduction degradation index (RDI+3.15) of sinter. This has been recognized; however, there are various opinions on the inhibition mech...CaC12 can be sprayed onto sinter surface, which can improve the low temperature reduction degradation index (RDI+3.15) of sinter. This has been recognized; however, there are various opinions on the inhibition mechanism of it. At the same time, the corrosion of C1 element on equipment is very serious. First-principle calculations based on density functional theory were performed to investigate the binding mechanisms of calcium species on a a-Fe2 03 (0 0 1) surface. This is crucial in demonstrating the role of the CaC12 on improving the low temperature reduction degrada tion index. It has been determined that C1 could greatly increase the adsorption of the vacuum layer for the Ca/Fe2 03 system and the relaxation produced by adsorption made bond length decrease, bond energies increase and structure compact. Those are the main reasons that inhibiting the reduction disintegration of sinter.展开更多
CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast ...CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast furnace or converter. In order to explore the dephosphorization ability of CaO-SiO2-Al2O3-MgO-Fex O slag, its phosphorus capacity was measured at 1673 K by gas-slag-metal equilibrium technique. An iron crucible was used as the reaction vessel, Ag alloy with 0.2 % P was used as the metal phase which equilibrated with CaO-SiO2-Al2O3-MgO-Fex O slag, and a constant flow of CO-CO2-N2 gas was used to provide oxygen partial pressure in the experi- ment. The effects of MgO, Fex O and basicity on slag phosphorus capacity were investigated by single factor test. The results show that the phosphorus capacity rises firstly and then decreases with increasing MgO content under the condition of basicity 1.3, Fe2 O content of 20% and A12 03 content of 12%. The phosphorus value reaches maximum as the MgO content is 8%. When the basicity of slag is 1.1, MgO content is 10%, and Al2O3 is 12%, the phos- phorus capacity increases with the increase of Fe, O content. The phosphorus capacity rises linearly when the basicity is increased from 1.1 to 1. 5.展开更多
BN-MgA1ON composites were prepared by hot-pressing sintering under nitrogen atmosphere with BN-Mg- A1ON composite powders as raw material and Y2 O3 as sintering additive. Based on thermodynamic analysis, the oxi- dati...BN-MgA1ON composites were prepared by hot-pressing sintering under nitrogen atmosphere with BN-Mg- A1ON composite powders as raw material and Y2 O3 as sintering additive. Based on thermodynamic analysis, the oxi- dation resistance of BN-MgAION composites was investigated and the dynamics of oxidation process was also ana- lyzed. The oxidation process and the micro-morphology of the samples before and after oxidation were characterized by X-ray diffraction and scanning electron microscopy. The dynamics of oxidation resistance of the BN-MgA1ON composites was investigated via the analysis of the constant temperature oxidation mass gain curves. The results show that the main components of the material are MgA1ON, Sialon, BN and CaYAI3 07 at 1 650--1750 *C, and the content of CaYA1307 decreases as the sintering temperature increases. The BN-MgA1ON composites prepared at 1750 ℃ is uniform and compact with the balanced distributions of A1, Mg, O, and N. The oxidation process of BN- MgA1ON composites in air mainly consists of MgAION, Sialon and BN oxidation. The section after being oxidized at 1000--1300 ℃ involves three layers, namely, the outer layer, the middle layer and the inner layer. The oxidation process follows the parabola model. The apparent activation energy of the oxidation process is 2.13 × 10 5 J/mol and the frequency factor is 4.66 × 10 6.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51174074)Open Fund Project of National Key Laboratory in University of Science and Technology Beijing of China(KF13-02)
文摘CaC12 can be sprayed onto sinter surface, which can improve the low temperature reduction degradation index (RDI+3.15) of sinter. This has been recognized; however, there are various opinions on the inhibition mechanism of it. At the same time, the corrosion of C1 element on equipment is very serious. First-principle calculations based on density functional theory were performed to investigate the binding mechanisms of calcium species on a a-Fe2 03 (0 0 1) surface. This is crucial in demonstrating the role of the CaC12 on improving the low temperature reduction degrada tion index. It has been determined that C1 could greatly increase the adsorption of the vacuum layer for the Ca/Fe2 03 system and the relaxation produced by adsorption made bond length decrease, bond energies increase and structure compact. Those are the main reasons that inhibiting the reduction disintegration of sinter.
基金Item Sponsored by the State Key Program of National Natural Science Foundation of China(U1360205)National Natural Science Foundation of China(51174074)
文摘CaO-SiO2-Al2O3-MgO-Fex O slag occurs in the production process of Corex ironmaking technology. Most of its metallurgical properties, especially the phosphorus property, are different from the slag produced from blast furnace or converter. In order to explore the dephosphorization ability of CaO-SiO2-Al2O3-MgO-Fex O slag, its phosphorus capacity was measured at 1673 K by gas-slag-metal equilibrium technique. An iron crucible was used as the reaction vessel, Ag alloy with 0.2 % P was used as the metal phase which equilibrated with CaO-SiO2-Al2O3-MgO-Fex O slag, and a constant flow of CO-CO2-N2 gas was used to provide oxygen partial pressure in the experi- ment. The effects of MgO, Fex O and basicity on slag phosphorus capacity were investigated by single factor test. The results show that the phosphorus capacity rises firstly and then decreases with increasing MgO content under the condition of basicity 1.3, Fe2 O content of 20% and A12 03 content of 12%. The phosphorus value reaches maximum as the MgO content is 8%. When the basicity of slag is 1.1, MgO content is 10%, and Al2O3 is 12%, the phos- phorus capacity increases with the increase of Fe, O content. The phosphorus capacity rises linearly when the basicity is increased from 1.1 to 1. 5.
基金Item Sponsored by National Natural Science Foundation of China(50904022)Education Department of Hebei Province Outstanding Youth Fund Project of China(Y2011116)
文摘BN-MgA1ON composites were prepared by hot-pressing sintering under nitrogen atmosphere with BN-Mg- A1ON composite powders as raw material and Y2 O3 as sintering additive. Based on thermodynamic analysis, the oxi- dation resistance of BN-MgAION composites was investigated and the dynamics of oxidation process was also ana- lyzed. The oxidation process and the micro-morphology of the samples before and after oxidation were characterized by X-ray diffraction and scanning electron microscopy. The dynamics of oxidation resistance of the BN-MgA1ON composites was investigated via the analysis of the constant temperature oxidation mass gain curves. The results show that the main components of the material are MgA1ON, Sialon, BN and CaYAI3 07 at 1 650--1750 *C, and the content of CaYA1307 decreases as the sintering temperature increases. The BN-MgA1ON composites prepared at 1750 ℃ is uniform and compact with the balanced distributions of A1, Mg, O, and N. The oxidation process of BN- MgA1ON composites in air mainly consists of MgAION, Sialon and BN oxidation. The section after being oxidized at 1000--1300 ℃ involves three layers, namely, the outer layer, the middle layer and the inner layer. The oxidation process follows the parabola model. The apparent activation energy of the oxidation process is 2.13 × 10 5 J/mol and the frequency factor is 4.66 × 10 6.