期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Surface‑Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High‑Performance Aqueous Zinc‑Ion Battery 被引量:5
1
作者 Huan Meng qing ran +8 位作者 Tian-Yi Dai Hang Shi Shu-Pei Zeng Yong-Fu Zhu Zi Wen Wei Zhang Xing-You Lang Wei-Tao Zheng qing Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期58-71,共14页
Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large vol... Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h. 展开更多
关键词 Nanoporous metal Zinc-based alloy anode Aqueous zinc-ion batteries Surface alloying
下载PDF
Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode 被引量:3
2
作者 Meihua Zhu qing ran +7 位作者 Houhou Huang Yunfei Xie Mengxiao Zhong Geyu Lu Fu-Quan Bai Xing-You Lang Xiaoteng Jia Danming Chao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期535-548,共14页
Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead ... Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead to high anodic polarization.Here,we present a bio-inspired silk fibroin(SF)coating with amphoteric charges to construct an interface reversible electric field,which manipulates the transfer kinetics of Zn^(2+) and reduces anodic polarization.The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn^(2+) flux via the inter-play between the charged coating and adsorbed ions,endowing the Zn-SF anode with low polarization voltage and stable plating/stripping.Experimental analyses with theo-retical calculations suggest that SF can facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+) and provide nucleation sites for uniform deposition.Consequently,the Zn-SF anode delivers a high-rate performance with low voltage polarization(83 mV at 20 mA cm^(−2)) and excellent stability(1500 h at 1 mA cm^(−2);500 h at 10 mA cm^(−2)),realizing exceptional cumulative capacity of 2.5 Ah cm^(−2).The full cell coupled with Zn_(x)V_(2)O_(5)·nH_(2)O(ZnVO)cathode achieves specific energy of~270.5/150.6 Wh kg^(−1)(at 0.5/10 A g^(−1))with-99.8% Coulombic efficiency and retains~80.3%(at 5.0 A g^(−1))after 3000 cycles. 展开更多
关键词 Silk fibroin coating Zn anode Amphoteric charge Interfacial engineering Aqueous zinc-ion batteries
下载PDF
Ultrahigh-energy and-power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides 被引量:3
3
作者 Sheng-Bo Wang qing ran +5 位作者 Wu-Bin Wan Hang Shi Shu-Pei Zeng Zi Wen Xing-You Lang qing Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期159-166,共8页
Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-o... Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-of-the-art electrode materials having practical capacities far below their theoretical values.Here we demonstrate that high compatibility between layered transition-metal oxide hosts and hydrated cation guests substantially boost their multi-electron-redox reactions to offer higher capacities and rate capability,based on typical bipolar vanadium oxides preintercalated with hydrated cations(M_(x)V_(2)O_(5)).When seamlessly integrated on Au current microcollectors with a three-dimensional bicontinuous nanoporous architecture that offers high pathways of electron transfer and ion transport,the constituent Zn_(x)V_(2)O_(5) exhibits specific capacity of as high as∼527 mAh g^(−1) at 5 mV s^(−1) and retains∼300 mAh g^(−1) at 200 mV s^(−1) in 1 M ZnSO_(4) aqueous electrolyte,outperforming the M_(x)V_(2)O_(5)(M=Li,Na,K,Mg).This allows aqueous rechargeable zinc-ion microbatteries constructed with symmetric nanoporous Zn_(x)V_(2)O_(5)/Au interdigital microelectrodes as anode and cathode to show high-density energy of∼358 mWh cm^(−3)(a value that is forty-fold higher than that of 4 V/500μAh Li thin film battery)at high levels of power delivery. 展开更多
关键词 Multivalent metal ions Aqueous rechargeable batteries MICROBATTERIES Nanoporous metals Metal/oxide composites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部