期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fully sprayed MXene-based high-performance flexible piezoresistive sensor for image recognition
1
作者 Zhi-Dong zhang Xue-Feng Zhao +4 位作者 qing-chao zhang Jie Liang Hui-Nan zhang Tian-Sheng zhang Chen-Yang Xue 《Nano Materials Science》 EI CAS CSCD 2024年第1期77-85,共9页
High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring,soft robotics,medical treatment,and human-computer interface.However,these flexible pres... High-performance flexible pressure sensors provide comprehensive tactile perception and are applied in human activity monitoring,soft robotics,medical treatment,and human-computer interface.However,these flexible pressure sensors require extensive nano-architectural design and complicated manufacturing and are timeconsuming.Herein,a highly sensitive,flexible piezoresistive tactile sensor is designed and fabricated,consisting of three main parts:the randomly distributed microstructure on T-ZnOw/PDMS film as a top substrate,multilayer Ti_(3)C_(2)-MXene film as an intermediate conductive filler,and the few-layer Ti_(3)C_(2)-MXene nanosheetbased interdigital electrodes as the bottom substrate.The MXene-based piezoresistive sensor with randomly distributed microstructure exhibits a high sensitivity over a broad pressure range(less than 10 kPa for 175 kPa^(-1))and possesses an out-standing permanence of up to 5000 cycles.Moreover,a 16-pixel sensor array is designed,and its potential applications in visualizing pressure distribution and an example of tactile feedback are demonstrated.This fully sprayed MXene-based pressure sensor,with high sensitivity and excellent durability,can be widely used in,electronic skin,intelligent robots,and many other emerging technologies. 展开更多
关键词 Piezoresistive sensor Ti_(3)C_(2)-MXene T-ZnOw/PDMS film Randomly distributed microstructure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部