期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of a novel multi-functional integrated bioconjugate effectively targeting K-Ras mutant pancreatic cancer 被引量:1
1
作者 Yang-Yang Wang Liang Li +4 位作者 Xiu-Jun Liu qing-fang miao Yi Li Meng-Ran Zhang Yong-Su Zhen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第2期232-242,共11页
Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmo... Folate receptor(FR)overexpression occurs in a variety of cancers,including pancreatic cancer.In addition,enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer.Furthermore,the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer.In this study,a novel FR-directed,macropinocytosis-enhanced,and highly cytotoxic bioconjugate folate(F)-human serum albumin(HSA)-apoprotein of lidamycin(LDP)-active enediyne(AE)derived from lidamycin was designed and prepared.F-HSA-LDP-AE consisted of four moieties:F,HSA,LDP,and AE.F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells.Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells.By in vivo optical imaging,F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice,showing clear and lasting tumor localization for 360 h.In the MTT assay,F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines.It also induced apoptosis and caused G2/M cell cycle arrest.F-HSALDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice.At well-tolerated doses of 0.5 and 1 mg/kg,(i.v.,twice),the inhibition rates were 91.2%and 94.8%,respectively(P<0.01).The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer. 展开更多
关键词 Pancreatic cancer Folate receptor Multi-functional Macropinocytosis-enhanced BIOCONJUGATE K-RAS PEGYLATION
下载PDF
Excellent effects and possible mechanisms of action of a new antibody–drug conjugate against EGFR-positive triple-negative breast cancer 被引量:1
2
作者 Dan-Dan Zhou Wei-Qi Bai +4 位作者 Xiao-Tian Zhai Li-Ping Sun Yong-Su Zhen Zhuo-Rong Li qing-fang miao 《Military Medical Research》 SCIE CAS CSCD 2022年第4期419-431,共13页
Background:Triple-negative breast cancer(TNBC)is the most aggressive subtype and occurs in approximately 15%–20%of diagnosed breast cancers.TNBC is characterized by its highly metastatic and recurrent features,as wel... Background:Triple-negative breast cancer(TNBC)is the most aggressive subtype and occurs in approximately 15%–20%of diagnosed breast cancers.TNBC is characterized by its highly metastatic and recurrent features,as well as a lack of specific targets and targeted therapeutics.Epidermal growth factor receptor(EGFR)is highly expressed in a variety of tumors,especially in TNBC.LR004-VC-MMAE is a new EGFR-targeting antibody–drug conjugate produced by our laboratory.This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action.Methods:LR004-VC-MMAE was prepared by coupling a cytotoxic payload(MMAE)to an anti-EGFR antibody(LR004)via a linker,and the drug-to-antibody ratio(DAR)was analyzed by HIC-HPLC.The gene expression of EGFR in a series of breast cancer cell lines was assessed using a publicly available microarray dataset(GSE41313)and Western blotting.MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE(0,0.0066,0.066,0.66,6.6 nmol/L),and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation.The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VCMMAE concentrations(2.5 and 5 nmol/L)with wound healing and Transwell invasion assays.Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on cancer stem cells(MDA-MB-468 and MDA-MB-231 cells).The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo.Briefly,BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDAMB-231 cells.Then they were randomly divided into 4 groups(n=6 per group)and treated with PBS,naked LR004(10 mg/kg),LR004-VC-MMAE(10 mg/kg),or doxorubicin,respectively.Tumor sizes and the body weights of mice were measured every 4 d.The effects of LR004-VC-MMAE on apoptosis and cell cycle distribution were analyzed by flow cytometry.Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR,ERK,MEK phosphorylation and tumor stemness marker gene expression.Results:LR004-VC-MMAE with a DAR of 4.02 were obtained.The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells(P<0.01).LR004-VC-MMAE inhibited the proliferation of EGFRpositive TNBC cells,and the ICvalues of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were(0.13±0.02)nmol/L and(0.66±0.06)nmol/L,respectively,which were significantly lower than that of cells treated with MMAE[(3.20±0.60)nmol/L,P<0.01,and(6.60±0.50)nmol/L,P<0.001].LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells.Moreover,LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability.In TNBC xenograft models,LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36.Surprisingly,tumor recurrence was not observed until the end of the experiment on day 52.In a mechanistic study,we found that LR004-VC-MMAE significantly induced cell apoptosis and cell cycle arrest at G/M phase in MDAMB-468[(34±5)%vs.(12±2)%,P<0.001]and MDA-MB-231[(27±4)%vs.(18±3)%,P<0.01]cells.LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of cancer stemness marker genes such as Oct4,Sox2,KLF4 and EpCAM.Conclusions:LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of cancer stemness marker genes.It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC. 展开更多
关键词 Triple-negative breast cancer Epidermal growth factor receptor Antibody–drug conjugate Targeted therapy Antitumor effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部