Systematic error suppression and test data processing are very important in improving the accuracy and sensitivity of the atom interferometer(AI)-based weak-equivalence-principle(WEP) test in space. Here we present a ...Systematic error suppression and test data processing are very important in improving the accuracy and sensitivity of the atom interferometer(AI)-based weak-equivalence-principle(WEP) test in space. Here we present a spectrum correlation method to investigate the test data of the AI-based WEP test in space by analyzing the characteristics of systematic errors and noises. The power spectrum of the Eotvos coefficient η, systematic errors, and noises in AI-based WEP test in space are analyzed and calculated in detail. By using the method, the WEP violation signal is modulated from direct current(DC) frequency band to alternating current(AC) frequency band. We find that the signal can be effectively extracted and the influence of systematic errors can be greatly suppressed by analyzing the power spectrum of the test data when the spacecraft is in an inertial pointing mode. Furthermore, the relation between the Eotvos coefficient η and the number of measurements is obtained under certain simulated parameters. This method will be useful for both isotopic and nonisotopic AI-based WEP tests in space.展开更多
基金Project supported by the National Natural Science Foundation of China(Grants No.11947057)the Foundation for Distinguished Young Scientist of Jiangxi Province,China(Grant No.2016BCB23009)the Postdoctoral Applied Research Program of Qingdao City,Shandong Province,China(Grant No.62350079311135).
文摘Systematic error suppression and test data processing are very important in improving the accuracy and sensitivity of the atom interferometer(AI)-based weak-equivalence-principle(WEP) test in space. Here we present a spectrum correlation method to investigate the test data of the AI-based WEP test in space by analyzing the characteristics of systematic errors and noises. The power spectrum of the Eotvos coefficient η, systematic errors, and noises in AI-based WEP test in space are analyzed and calculated in detail. By using the method, the WEP violation signal is modulated from direct current(DC) frequency band to alternating current(AC) frequency band. We find that the signal can be effectively extracted and the influence of systematic errors can be greatly suppressed by analyzing the power spectrum of the test data when the spacecraft is in an inertial pointing mode. Furthermore, the relation between the Eotvos coefficient η and the number of measurements is obtained under certain simulated parameters. This method will be useful for both isotopic and nonisotopic AI-based WEP tests in space.