期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Flow behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models 被引量:15
1
作者 Jie YAN qing-lin pan +1 位作者 An-de LI Wen-bo SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第3期638-647,共10页
The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate ra... The hot deformation behavior of Al?6.2Zn?0.70Mg?0.30Mn?0.17Zr alloy was investigated by isothermal compressiontest on a Gleeble?3500machine in the deformation temperature range between623and773K and the strain rate range between0.01and20s?1.The results show that the flow stress decreases with decreasing strain rate and increasing deformation temperature.Basedon the experimental results,Arrhenius constitutive equations and artificial neural network(ANN)model were established toinvestigate the flow behavior of the alloy.The calculated results show that the influence of strain on material constants can berepresented by a6th-order polynomial function.The ANN model with16neurons in hidden layer possesses perfect performanceprediction of the flow stress.The predictabilities of the two established models are different.The errors of results calculated by ANNmodel were more centralized and the mean absolute error corresponding to Arrhenius constitutive equations and ANN model are3.49%and1.03%,respectively.In predicting the flow stress of experimental aluminum alloy,the ANN model has a betterpredictability and greater efficiency than Arrhenius constitutive equations. 展开更多
关键词 aluminum alloy hot compressive deformation flow stress constitutive equation artificial neural network model
下载PDF
Prediction on hot deformation behavior of spray-formed 7055 aluminum alloy via phenomenological models 被引量:7
2
作者 Xiang-dong WANG qing-lin pan +3 位作者 Shang-wu XIONG Li-li LIU Yuan-wei SUN Wei-yi WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1484-1494,共11页
Hot compression tests in the temperature range of 340-450 ℃ and strain rate range of 0.001-1 s^-1 of spray-formed 7055 aluminum alloy were carried out to study its hot deformation behavior. Three phenomenological mod... Hot compression tests in the temperature range of 340-450 ℃ and strain rate range of 0.001-1 s^-1 of spray-formed 7055 aluminum alloy were carried out to study its hot deformation behavior. Three phenomenological models including Johnson-Cook, modified Fields-Backofen and Arrhenius-type were introduced to predict the flow stresses during the compression process. And then, a comparative predictability of the phenomenological models was estimated in terms of the relative errors, correlation coefficient(R), and average absolute relative error(AARE). The results indicate that Johnson-Cook model and modified Fields-Backofen model cannot well predict the hot deformation behavior due to the large deviation in the process of line regression fitting. Arrhenius-type model obtains the best fit through combining the effect of strain rate and temperature. 展开更多
关键词 spray-formed 7055 aluminum alloy hot deformation behavior phenomenological models statistical analyses
下载PDF
Microstructure and mechanical properties of Al−Mg−Si alloy U-shaped profile 被引量:4
3
作者 Xiang-dong WANG Xiong LIU +7 位作者 Hao DING Su-rong YAN Zi-hua XIE Bai-qing pan Yong-hong LI qing-lin pan Yun-lai DENG Wei-yi WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2915-2926,共12页
To get a full understanding of hot extrusion,solid solution treatment and aging process on the Al−0.56Mg−0.63Si alloy,the microstructure and mechanical properties of a U-shaped profile were studied through optical mic... To get a full understanding of hot extrusion,solid solution treatment and aging process on the Al−0.56Mg−0.63Si alloy,the microstructure and mechanical properties of a U-shaped profile were studied through optical microscopy,scanning electrical microscopy,transmission electrical microscopy,hardness,and tensile tests.The coarse equiaxed grains existed near the profile edge as a result of the dynamic recrystallization nucleation and exceeding growth during hot extrusion.The fibrous deformed and sub-structured grains located between the two coarse grain layers,due to the occurrence of work-hardening and dynamic recovery.Perpendicular needle β′′precipitates were distributed inside the grain,and obvious precipitates-free zone appeared after aging treatment.The tensile strength,yield strength and elongation of the aged Al−Mg−Si alloy U-shaped profile were no less than 279.4 MPa,258.6 MPa,and 21.6%,respectively.The fracture morphology showed dimple rupture characteristics.The precipitates and grain boundaries played key role in the strengthening contribution. 展开更多
关键词 Al−Mg−Si alloy U-shaped profile hot extrusion microstructure mechanical properties PRECIPITATES
下载PDF
Revealing proton-coupled exchange mechanism in aqueous ion-exchange synthesis of nickel-rich layered cathodes for lithium-ion batteries
4
作者 Yu-Hong Luo qing-lin pan +10 位作者 Han-Xin Wei Ying-De Huang Pei-Yao Li Lin-Bo Tang Zhen-Yu Wang Cheng Yan Jing Mao Ke-Hua Dai Qing Wu Xia-Hui Zhang Jun-Chao Zheng 《eScience》 2024年第4期103-109,共7页
Ion exchange is a promising synthetic method for alleviating severe cation mixing in traditional layered oxide materials for lithium-ion batteries,leading to enhanced structural stability.However,the underlying mechan... Ion exchange is a promising synthetic method for alleviating severe cation mixing in traditional layered oxide materials for lithium-ion batteries,leading to enhanced structural stability.However,the underlying mechanisms of ion exchange are still not fully understood.Such a fundamental study of the ion-exchange mechanism is needed for achieving the controllable synthesis of layered oxides with a stable structure.Herein,we thoroughly unearth the underlying mechanism that triggers the ion exchange of Ni-rich materials in aqueous solutions by examining time-resolved structural evolution combined with theoretical calculations.Our results reveal that the reaction pathway of ion exchange can be divided into two steps:protonation and lithiation.The proton is the key to achieving charge balance in the ion exchange process,as revealed by X-ray adsorption spectroscopy and inductive coupled plasma analysis.In addition,the intermediate product shows high lattice distortion during ion exchange,but it ends up with a most stable product with high lattice energy.Such apparent discrepancies in lattice energy between materials before and after ion exchange emphasize the importance of synthetic design in structural stability.This work provides new insights into the ion-exchange synthesis of Ni-rich oxide materials,which advances the development of cathode materials for high-performance lithium-ion batteries. 展开更多
关键词 Ion exchange Reaction mechanisms Proton-coupledNi-rich oxides PROTONATION LITHIATION Lithium-ion batteries
原文传递
Effect of N and Zr on as-cast microstructure and properties after annealing of a high-speed steel 被引量:4
5
作者 Hao-ran Cui Jian-ping Lai +1 位作者 qing-lin pan Xiang-dong Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第4期460-468,共9页
Effects of N and Zr on the as-cast microstructure and properties after annealing of high-speed steel (HSS) were investigated by using electronic probe micro-analysis, Rockwell hardness test, X-ray diffractometry and... Effects of N and Zr on the as-cast microstructure and properties after annealing of high-speed steel (HSS) were investigated by using electronic probe micro-analysis, Rockwell hardness test, X-ray diffractometry and differential scanning calorimetry with combination of microstructure analysis. The results indicate that the addition of N and Zr will refine the eutectic structures and enhance the stability of carbides which are mainly MC, M2C and M7C3. The coarse dendritic structures decrease significantly and most of the carbides are distributed in the microstructure uniformly. Moreover, a kind of Zr-Si compound which only exists in VC is discovered, and this new phase is speculated to be related with the spheroidization of VC. The annealing process is set up to 6 different time periods which are 1, 3, 6, 10, 15 and 20 h, respectively. In different annealing processes at 750 ℃ which is lower than austenitizing temperature, the addition of N and Zr makes the decrease of hardness more obvious and restrains the precipitation of secondary carbides with the extension of time. Moreover, when the annealing time reaches 20 h, some clusters appear in the matrix of the two samples, and the density of clusters in HSS1 is lower, but the matrix of HSS1 contains more C and alloying elements which indicate more carbides precipitate. 展开更多
关键词 N addition Zr addition High-speed steel As-cast microstructure Precipitation ANNEALING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部