Mg(OH)2/Mg-Al-layered double hydroxide (LDH) coatings were modified with methyltrimethoxysilane (MTMS) on magnesium alloys. Effect of hydrolysis degree of silane solution on coating formation was investigated. Chemica...Mg(OH)2/Mg-Al-layered double hydroxide (LDH) coatings were modified with methyltrimethoxysilane (MTMS) on magnesium alloys. Effect of hydrolysis degree of silane solution on coating formation was investigated. Chemical compositions and surface morphologies of the coatings were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FESEM). Results indicated that the composite coatings consisted of polymethyltrimethoxysilane (PMTMS), LDH and Mg(OH)2. Electrochemical and hydrogen evolution measurements revealed that the composite coatings possessed good corrosion resistance, especially the ones prepared in a high hydrolysis degree of silane. The optimum corrosion resistance of the composite coati ng was LDH/PMTMS-3 coating, which had the lowest value of corrosion current density (5.537×10^-9 A·cm^-2) and a dense surface.Plausible mechanism for coating formation and corrosion process of MTMS-modified Mg(OH)2/Mg-Al-LDH coatings were discussed.展开更多
A Mg-AI layered double hydroxide(Mg-AI-LDH)coating was firstly synthesized via an in-situ steam coating growth method on the AZ31 Mg alloy,and then was modified with poly(L-lactic acid)(PLLA)via dipping and vacuum fre...A Mg-AI layered double hydroxide(Mg-AI-LDH)coating was firstly synthesized via an in-situ steam coating growth method on the AZ31 Mg alloy,and then was modified with poly(L-lactic acid)(PLLA)via dipping and vacuum freeze-drying.The microstructure and composition of LDH/PLLA hybrid coating were analyzed by XRD,SEM,EDS and FT-IR.The biocorrosion behavior of hybrid coating was evaluated by potentiodynamic polarization,electrochemical impedance spectroscopy(EIS)and hydrogen evolution test in the Hank's solution.The results showed that LDH/PLLA coatings exhibited a much dense layer compared to the unmodified Mg-AI-LDH coating with unobvious boundary between PLLA and LDH coatings.The corrosion current density of the LDH/PLLA-10 hybrid coating decreased three orders of magnitude in comparison to its substrate.It was proven that the existence of the PLLA coating further prolonged the service life of the Mg-AI-LDH coating.What's more,the MTT assay and livel dead staining showed that the LDH/PLL A-10 coating had good biocompatibility for Mouse NIH3T3 fibroblasts.The formation mechanism and the anti-corrosion mechanism of hybrid coatings were proposed.展开更多
The present work aimed at assessing the electrochemical behavior and the corrosion inhibition performance of Mg-Al-layered double hydroxide(LDH)coatings modified with methyltrimethoxysilane(MTMS)and cerium nitrate on ...The present work aimed at assessing the electrochemical behavior and the corrosion inhibition performance of Mg-Al-layered double hydroxide(LDH)coatings modified with methyltrimethoxysilane(MTMS)and cerium nitrate on AA5005 aluminum alloy.The chemical compositions and surface morphologies of the coatings were investigated by XRD,FT-IR and FE-SEM,while their corrosion resistance was evaluated by electrochemical and immersion tests.An optimum corrosion resistance of the composite coatings was obtained by adding 10^−2 mol·L^−1 cerium nitrate.An excess addition of cerium nitrate resulted in a loose structure and poor corrosion resistance of the coating.The corrosion mechanism of the composite coatings was proposed and discussed.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.51601108 and 51571134)the Natural Science Foundation of Shandong Province (No. 2016ZRB01A62)+1 种基金the Shandong University of Science and Technology Research Fund (No. 2014TDJH104)the Opening Fund of Ministry-Province Jointly Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials
文摘Mg(OH)2/Mg-Al-layered double hydroxide (LDH) coatings were modified with methyltrimethoxysilane (MTMS) on magnesium alloys. Effect of hydrolysis degree of silane solution on coating formation was investigated. Chemical compositions and surface morphologies of the coatings were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FESEM). Results indicated that the composite coatings consisted of polymethyltrimethoxysilane (PMTMS), LDH and Mg(OH)2. Electrochemical and hydrogen evolution measurements revealed that the composite coatings possessed good corrosion resistance, especially the ones prepared in a high hydrolysis degree of silane. The optimum corrosion resistance of the composite coati ng was LDH/PMTMS-3 coating, which had the lowest value of corrosion current density (5.537×10^-9 A·cm^-2) and a dense surface.Plausible mechanism for coating formation and corrosion process of MTMS-modified Mg(OH)2/Mg-Al-LDH coatings were discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51601108 and 51571134)the SDUST Research Fund(Grant No.2014TDJH104)the Natural Science Foundation of Shandong Province(ZR2019MB053).
文摘A Mg-AI layered double hydroxide(Mg-AI-LDH)coating was firstly synthesized via an in-situ steam coating growth method on the AZ31 Mg alloy,and then was modified with poly(L-lactic acid)(PLLA)via dipping and vacuum freeze-drying.The microstructure and composition of LDH/PLLA hybrid coating were analyzed by XRD,SEM,EDS and FT-IR.The biocorrosion behavior of hybrid coating was evaluated by potentiodynamic polarization,electrochemical impedance spectroscopy(EIS)and hydrogen evolution test in the Hank's solution.The results showed that LDH/PLLA coatings exhibited a much dense layer compared to the unmodified Mg-AI-LDH coating with unobvious boundary between PLLA and LDH coatings.The corrosion current density of the LDH/PLLA-10 hybrid coating decreased three orders of magnitude in comparison to its substrate.It was proven that the existence of the PLLA coating further prolonged the service life of the Mg-AI-LDH coating.What's more,the MTT assay and livel dead staining showed that the LDH/PLL A-10 coating had good biocompatibility for Mouse NIH3T3 fibroblasts.The formation mechanism and the anti-corrosion mechanism of hybrid coatings were proposed.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51601108 and 21676285)the Natural Science Foundation of Shandong Province(Grant No.ZR2019MB053)+1 种基金the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2017RCJJ015)the SDUST Research Fund(No.2014TDJH104).
文摘The present work aimed at assessing the electrochemical behavior and the corrosion inhibition performance of Mg-Al-layered double hydroxide(LDH)coatings modified with methyltrimethoxysilane(MTMS)and cerium nitrate on AA5005 aluminum alloy.The chemical compositions and surface morphologies of the coatings were investigated by XRD,FT-IR and FE-SEM,while their corrosion resistance was evaluated by electrochemical and immersion tests.An optimum corrosion resistance of the composite coatings was obtained by adding 10^−2 mol·L^−1 cerium nitrate.An excess addition of cerium nitrate resulted in a loose structure and poor corrosion resistance of the coating.The corrosion mechanism of the composite coatings was proposed and discussed.