Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce glo...Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS's physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers' designing, such as microcell- carriers, micro-drug-carriers, etc., are presented.展开更多
Fungi play an important role in dying wastewater treatment.In this work,the mycelia of Lactarius deliciosus exhibited an excellent capacity in decolorizing coomassie brilliant blue(CBB).The results demonstrated that t...Fungi play an important role in dying wastewater treatment.In this work,the mycelia of Lactarius deliciosus exhibited an excellent capacity in decolorizing coomassie brilliant blue(CBB).The results demonstrated that the mycelia could treat CBB with high concentrations over a broad range of pH and temperature.The decolorization rate of 99.19%and the removal rate of 16.31 mg·L^(‒1)·h were realized.The mycelia could be recycled from decolorizing process for 19 times,indicating a good re-usability.It verified that the lignin peroxidase(121.65 U·L^(‒1))and manganese peroxidase(36.77 U·L^(‒1))were involved in the degradation and decolorization process of CBB.Toxicity assessments indicated the seed germination rate was up to 82.22%while inhibition to Escherichia coli decreased dramatically and no significant effect on Caenorhabditis elegans growth was found.The removal of CBB was a synergistic process accomplished by adsorption and biodegradation.The mycelia could be used for eco-friendly CBB treatment.展开更多
基金China Postdoctoral Science Foundation (No. 2017M611998)the National Natural Science Foundation of China (Grant Nos. 21606002 and 21576233)+2 种基金the Natural Science Foundation of Anhui Province (CN)(No. 1708085QC64)the Doctoral Research Start-up Fund of Anhui University (J01001319)the Undergraduate Research Training Programs for Innovation (Nos. KYXL2017036, 201710357034 and 201710357268).
文摘Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS's physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers' designing, such as microcell- carriers, micro-drug-carriers, etc., are presented.
基金This work was supported by the Anhui Provincial Program on Key Research and Development Project(Grant No.202004a06020021)the National Natural Science Foundation of China(Grant No.21606002)+1 种基金the Natural Science Foundation of Anhui Province(CN)(Grant No.1708085QC64)the Undergraduate Research Training Programs for Innovation(Grant Nos.201910357069,S201910357427).
文摘Fungi play an important role in dying wastewater treatment.In this work,the mycelia of Lactarius deliciosus exhibited an excellent capacity in decolorizing coomassie brilliant blue(CBB).The results demonstrated that the mycelia could treat CBB with high concentrations over a broad range of pH and temperature.The decolorization rate of 99.19%and the removal rate of 16.31 mg·L^(‒1)·h were realized.The mycelia could be recycled from decolorizing process for 19 times,indicating a good re-usability.It verified that the lignin peroxidase(121.65 U·L^(‒1))and manganese peroxidase(36.77 U·L^(‒1))were involved in the degradation and decolorization process of CBB.Toxicity assessments indicated the seed germination rate was up to 82.22%while inhibition to Escherichia coli decreased dramatically and no significant effect on Caenorhabditis elegans growth was found.The removal of CBB was a synergistic process accomplished by adsorption and biodegradation.The mycelia could be used for eco-friendly CBB treatment.