A theoretical model for explaining the O'Connell effect of close binary stars is given based on the hypothesis that the circumstellar material of a binary system is captured by its components. The results inferred...A theoretical model for explaining the O'Connell effect of close binary stars is given based on the hypothesis that the circumstellar material of a binary system is captured by its components. The results inferred from the model suggest that late-type and/or short-period binaries can easily produce obvious O'Connell effect and that the occurrence of O'Connell effect has no relation with the type of binaries. These conclusions are in agreement with the observed results. The observed O'Connell effects of six binary systems are examined by the model. For three W-subtype W UMa binaries (YY Eri, BX Per and SW Lac), the densities of the materials captured by the two components are assumed to be equal, and the calculated O'Connell effect is found to be almost equal to the observed effect. For three A-subtype W UMa systems (CN And, FG Hya and AU Ser), the two densities are assumed to be different, and are calculated separately. The calculated O'Connell effect turns out to agree better with the observed effect than that was formerly obtained.展开更多
基金SuppoSed by the National Natural Science Foundation of China.
文摘A theoretical model for explaining the O'Connell effect of close binary stars is given based on the hypothesis that the circumstellar material of a binary system is captured by its components. The results inferred from the model suggest that late-type and/or short-period binaries can easily produce obvious O'Connell effect and that the occurrence of O'Connell effect has no relation with the type of binaries. These conclusions are in agreement with the observed results. The observed O'Connell effects of six binary systems are examined by the model. For three W-subtype W UMa binaries (YY Eri, BX Per and SW Lac), the densities of the materials captured by the two components are assumed to be equal, and the calculated O'Connell effect is found to be almost equal to the observed effect. For three A-subtype W UMa systems (CN And, FG Hya and AU Ser), the two densities are assumed to be different, and are calculated separately. The calculated O'Connell effect turns out to agree better with the observed effect than that was formerly obtained.