We use neutron powder diffraction to investigate the magnetic and crystalline structure of Cr_(2)GaN.A magnetic phase transition is identified at T≈170 K,whereas no trace of structural transition is observed down to ...We use neutron powder diffraction to investigate the magnetic and crystalline structure of Cr_(2)GaN.A magnetic phase transition is identified at T≈170 K,whereas no trace of structural transition is observed down to 6 K.Combining Rietveld refinement with irreducible representations,the spin configuration of Cr ions in Cr_(2)GaN is depicted as an incommensurate sinusoidal modulated structure characterized by a propagating vector k=(0.365,0.365,0).Upon warming up to the paramagnetic state,the magnetic order parameter closely resembles to the temperature dependence of c-axis lattice parameter,suggesting strong magneto-elastic coupling in this compound.Therefore,Cr_(2)Ga N provides a potential platform for exploration of magnetically tuned properties such as magnetoelectric,magnetostrictive and magnetocaloric effects,as well as their applications.展开更多
The development of zero and negative therma expansion(i.e.,ZTE and NTE)materials is of crucial importance to the control of undesirable thermal expansion for high-precision devices.In the present work,ZTE and NTE were...The development of zero and negative therma expansion(i.e.,ZTE and NTE)materials is of crucial importance to the control of undesirable thermal expansion for high-precision devices.In the present work,ZTE and NTE were obtained in directionally-solidified Mn_(x)Fe_(5-x)Si_(3)alloys with a strong<001>texture,in striking contrast to positive thermal expansion in their isotropic counterparts Magnetometry and in-situ X-ray diffraction(XRD)measurements were performed to uncover the origin of the anomalous thermal expansion.Magnetic measurements indicate a strong easy-plane magnetocrystalline anisotropy in the textured samples,where the magnetic moments are aligned within the ab plane of the hexagonal structure Temperature-dependent XRD on the x=1 sample reveals a ZTE character in the ab plane that is coupled to a ferromagnetic transition.As a result,the macroscopic ZTE(~0.22×10^(-6)K^(-1))in the x=1 sample can be attributed to the microscopic magneto volume effect within the ab plane,which is realized by the introduction of the<001>-textured microstructure.Besides,the competition between antiferromagnetic and ferromagnetic exchange coupling leads to NTE in textured x=1.5 and 2 samples.Additionally,textured x=1 sample displays enhanced magnetocaloric properties as compared to the conventional counterparts with randomly-oriented grains.Consequently this work demonstrates a new strategy toward the exploration of anomalous thermal expansion properties as well as the enhancement of magnetocaloric properties for materials with a strong magnetocrystalline anisotropy.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11822411,12061130200,11961160699,11974392,and 52101236)the National Key Research and Development Program of China(Grant Nos.2018YFA0704200,2017YFA0303100,and 2020YFA0406003)+4 种基金the Strategic Priority Research Program(B)of the CAS(GrantNo.XDB25000000)K.C.Wong Education Foundation(Grant No.GJTD-2020-01)the Youth Innovation Promotion Association of the CAS(Grant No.Y202001)Beijing Natural Science Foundation(Grant No.JQ19002)the Newton Advanced Fellowship funding from the Royal Society of UK(Grant No.NAFR1201248)。
文摘We use neutron powder diffraction to investigate the magnetic and crystalline structure of Cr_(2)GaN.A magnetic phase transition is identified at T≈170 K,whereas no trace of structural transition is observed down to 6 K.Combining Rietveld refinement with irreducible representations,the spin configuration of Cr ions in Cr_(2)GaN is depicted as an incommensurate sinusoidal modulated structure characterized by a propagating vector k=(0.365,0.365,0).Upon warming up to the paramagnetic state,the magnetic order parameter closely resembles to the temperature dependence of c-axis lattice parameter,suggesting strong magneto-elastic coupling in this compound.Therefore,Cr_(2)Ga N provides a potential platform for exploration of magnetically tuned properties such as magnetoelectric,magnetostrictive and magnetocaloric effects,as well as their applications.
基金financially supported by the National Natural Science Foundation of China(Nos.12004179,U1832191,51801102,52271180,52001167 and 52101236)Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology+1 种基金the Fundamental Research Funds for the Central Universities(No.30922010802)the Sino-German Mobility Program from the Sino-German Center for Research Promotion(SGC)(No.M-0447)。
文摘The development of zero and negative therma expansion(i.e.,ZTE and NTE)materials is of crucial importance to the control of undesirable thermal expansion for high-precision devices.In the present work,ZTE and NTE were obtained in directionally-solidified Mn_(x)Fe_(5-x)Si_(3)alloys with a strong<001>texture,in striking contrast to positive thermal expansion in their isotropic counterparts Magnetometry and in-situ X-ray diffraction(XRD)measurements were performed to uncover the origin of the anomalous thermal expansion.Magnetic measurements indicate a strong easy-plane magnetocrystalline anisotropy in the textured samples,where the magnetic moments are aligned within the ab plane of the hexagonal structure Temperature-dependent XRD on the x=1 sample reveals a ZTE character in the ab plane that is coupled to a ferromagnetic transition.As a result,the macroscopic ZTE(~0.22×10^(-6)K^(-1))in the x=1 sample can be attributed to the microscopic magneto volume effect within the ab plane,which is realized by the introduction of the<001>-textured microstructure.Besides,the competition between antiferromagnetic and ferromagnetic exchange coupling leads to NTE in textured x=1.5 and 2 samples.Additionally,textured x=1 sample displays enhanced magnetocaloric properties as compared to the conventional counterparts with randomly-oriented grains.Consequently this work demonstrates a new strategy toward the exploration of anomalous thermal expansion properties as well as the enhancement of magnetocaloric properties for materials with a strong magnetocrystalline anisotropy.