期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Reactive jet density distribution effect on its penetration behavior
1
作者 Huan-guo Guo Cheng-hai Su +3 位作者 Yi-qiang Cai Suo He qing-bo yu Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期190-202,共13页
In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from th... In this paper,the penetration mechanism of reactive jet with non-uniform density distribution is studied.The simulations show that the density deficit occurs in the whole reactive jet,and the density increases from the jet tip to tail.The density of jet tip is approximately 1.5 g/cm3,which is lower than that of the reactive liner materials.The X-ray experiments show similar results with the simulations.The density decreasing effect of jet tip has a significant influence on the penetration behavior when the reactive jet impacts steel plate.According to the simulation results,this paper assumes that the density gradient in the jet section has linear distribution.Then,the deflagration pressure generated by each jet element at the bottom of crater is introduced into the Bernoulli equation.Based on the virtual origin model and Szendrei-Held equation,the analytical models for penetration depth and radial cratering of reactive jet with the density reduction are obtained.Moreover,to further prove the validity of analytical models,the penetration experiments of the reactive liner shaped charge against steel plate under different standoffs are carried out.There is a convergence between the analytical crater profiles and experimental results when reactive jets penetrate steel plates under different standoffs,especially at standoff of 1.5 and 2.0charge diameters. 展开更多
关键词 Shaped charge Reactive jet Density distribution Jet penetration Virtual origin
下载PDF
Chain damage effects of multi-spaced plates by reactive jet impact 被引量:11
2
作者 yuan-feng Zheng Cheng-hai Su +2 位作者 Huan-guo Guo qing-bo yu Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期393-404,共12页
Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then resu... Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then results in unusual chain rupturing effects and excessive structural damage on the spaced plates by its deflagration reaction.In the present study,the chain damage behavior is initially demonstrated by experiments.The reactive liners,composed of 26 wt%Al and 74 wt%PTFE,are fabricated through a pressing and sintering process.Three reactive liner thicknesses of 0.08 CD,0.10 CD and 0.12 CD(charge diameter)are chosen to carry out the chain damage experiments.The results show a chain rupturing phenomenon caused by reactive jet.The constant reaction delay time and the different penetration velocities of reactive jets from liners with different thicknesses result in the variation of the deflagration position,which consequently determines the number of ruptured plates behind the armor.Then,the finite-element code AUTODYN-3D has been used to simulate the kinetic energy only-induced rupturing effects on plates,based on the mechanism of behind armor debris(BAD).The significant discrepancies between simulations and experiments indicate that one enhanced damage mechanism,the behind armor blast(BAB),has acted on the ruptured plates.Finally,a theoretical model is used to consider the BAB-induced enhancement,and the analysis shows that the rupturing area on aluminum plates depends strongly upon the KE only-induced pre-perforations,the mass of reactive materials,and the thickness of plates. 展开更多
关键词 Reactive materials Reactive jet Chain damage Behind armor blast
下载PDF
Effect of wave shaper on reactive materials jet formation and its penetration performance 被引量:6
3
作者 Huan-guo Guo yuan-feng Zheng +3 位作者 Le Tang qing-bo yu Chao Ge Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期495-505,共11页
Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge(RLSC)are investigated by experiments and simulations.The reactive materials liner with a density of2.3 g/cm^3 is fab... Wave shaper effect on formation behavior and penetration performance of reactive liner shaped charge(RLSC)are investigated by experiments and simulations.The reactive materials liner with a density of2.3 g/cm^3 is fabricated by cold pressing at a pressure of 300 MPa and sintering at a temperature of 380℃.Experiments of the RLSC with and without wave shaper against steel plates are carried out at standoffs of0.5,1.0,and 1.5 CD(charge diameter),respectively.The experimental results show that the penetration depths and structural damage effects of steel plates decrease with increasing the standoff,while the penetration depths and the damage effects of RLSC without wave shaper are much greater than that with wave shaper at the same standoff.To understand the unusual experimental results,numerical simulations based on AUTODYN-2 D code are conducted to discuss the wave shaper effect,including the propagation behavior of detonation wave,the velocity and temperature distribution of reactive jet,and penetration depth of reactive jet.The simulations indicate that,compared with RLSC without wave shaper,there is a higher temperature produced inside reactive jet with wave shaper.This unusual temperature rise effects are likely to be an important mechanism to cause the initiation delay time of reactive jet to decline,which results in significantly decreasing its penetration performance. 展开更多
关键词 Shaped charge REACTIVE materials LINER Wave SHAPER REACTIVE JET PENETRATION PERFORMANCE
下载PDF
The effect of sintering and cooling process on geometry distortion and mechanical properties transition of PTFE/Al reactive materials 被引量:9
4
作者 Hai-fu Wang Bao-qun Geng +3 位作者 Huan-guo Guo yuan-feng Zheng qing-bo yu Chao Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期720-730,共11页
In this research,the effect of the sintering and cooling process on geometry distortion and mechanical properties of PTFE/Al reactive material is investigated.Six particularly selected sintering temperatures,three dif... In this research,the effect of the sintering and cooling process on geometry distortion and mechanical properties of PTFE/Al reactive material is investigated.Six particularly selected sintering temperatures,three different cooling modes(annealing cooling,normalizing cooling and rapid cooling),three different initial cooling temperature s,as well as six different final cooling temperatures were designed to compare the effects of sintering temperature,cooling rate,initial cooling temperature and final cooling temperature on the properties of reactive materials.Geometry distortion was quantitatively analyzed by a statistic on the dimensional changes of the specimens and microscopic morphology.A mechanical response properties transition from brittle to ductile was found and analyzed.By combining the thermodynamic properties of PTFE and unsteady heat conduction theory,mechanisms of cooling induced morphology change,temperature induced distortion and strength decrease were obtained.The results showed that the cooling rate has the most significant effect on the morphology transformation,while initial cooling temperature has more significant effect on the dimensional distortion than final cooling temperature.As to the mechanical properties transition from brittle to plastic,a more prominent effect of initial cooling temperature than cooling rate and final temperature was revealed. 展开更多
关键词 Reactive material SINTERING COOLING Geometry distortion Mechanical properties
下载PDF
Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space 被引量:6
5
作者 Hao Zhang yuan-feng Zheng +3 位作者 qing-bo yu Chao Ge Cheng-hai Su Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期952-962,共11页
Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space were investigated through experiments and simulations.The volume of the enclosed concrete space is about 15 m^(3)... Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space were investigated through experiments and simulations.The volume of the enclosed concrete space is about 15 m^(3).The reactive liner enhanced shaped charge utilizes reactive copper double-layered liner,which is composed of an inner copper liner and an outer reactive liner,while the reactive material liner is fabricated by PTFE/Al(Polytetrafluoroethylene/Aluminum)powders through cold-pressing and sintering.Static explosion experiments show that,compared with the shaped charge which utilizes copper liner,the penetration cavity diameter and spalling area of concrete by the novel shaped charge were enlarged to 2 times and 4 times,respectively.Meanwhile,the following reactive material had blast effect and produced significant overpressure inside the concrete closed space.Theoretical analysis indicates concrete strength and detonation pressure of reactive material both affect the penetration cavity diameter.To the blast behavior of reactive material inside the concrete space,developing TNT equivalence model and simulated on AUTODYN-3 D for analysis.Simulation results reproduced propagation process of the shock wave in concrete space,and revealed multi-peaks phenomenon of overpressure-time curves.Furthermore,the empirical relationship between the peak overpressure and relative distance for the shock wave of reactive material was proposed. 展开更多
关键词 Shaped charge PENETRATION BLAST Concrete Numerical simulation
下载PDF
Force chains based mesoscale simulation on the dynamic response of Al-PTFE granular composites 被引量:6
6
作者 Le Tang Chao Ge +2 位作者 Huan-guo Guo qing-bo yu Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期56-63,共8页
Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the... Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the randomly normal distribution of real Al particles size is developed.The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments.The results indicate that,force chains behavior governed by the number and the size of agglomerated Al particles,significantly affects the impact response of the material.The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density.A high crack area of the material is critical mechanism to arouse the initiation reaction.The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance.In addition,simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials.It is found that smaller sized Al particle of composites are more preferred than its bulky material in ultimate strength.Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number.The simulation studies provide further insights into the plastic deformation,failure mechanism,and possible energy release capacity for Al-PTFE composites,which is helpful for further design and application of reactive materials. 展开更多
关键词 Al-PTFE Granular composites Mesoscale simulation Dynamic response Force chains
下载PDF
Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana 被引量:4
7
作者 qing-bo yu Guang Li +13 位作者 Guan Wang Jing-Chun Sun Peng-Cheng Wang Chen Wang Hua-Ling Mi Wei-Min Ma Jian Cui Yong-Lan Cui Kang Chong Yi-Xue Li yu-Hua Li Zhongming Zhao Tie-LiuShi Zhong-Nan Yang 《Cell Research》 SCIE CAS CSCD 2008年第10期1007-1019,共13页
Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of pr... Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis. 展开更多
关键词 ARABIDOPSIS chloroplast protein network functional linkage PHOTOSYNTHESIS
下载PDF
Behind-plate overpressure effect of steel-encased reactive material projectile impacting thin aluminum plate 被引量:4
8
作者 qing-bo yu Jia-hao Zhang +2 位作者 Hong-wei Zhao Yan-wen Xiao Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期723-734,共12页
Ballistic impact and sealed chamber tests were performed on the steel-encased reactive material projectile(SERMP)to understand its behind-plate overpressure effect when impacting the thin aluminum plates.The reactive ... Ballistic impact and sealed chamber tests were performed on the steel-encased reactive material projectile(SERMP)to understand its behind-plate overpressure effect when impacting the thin aluminum plates.The reactive material encased with a 1.5 mm thick 30CrMnSiNi2A steel shell was launched onto the initially sealed test chamber with a 3 mm thick 2024-T3 thin aluminum cover plate.Moreover,the overpressure signals in the test chamber were recorded by pressure sensors.The experimental results indicate an unusual behind-plate overpressure effect:as the density of the projectile increases from 6.43 g/cm^(3) to 7.58 g/cm^(3) by increasing the content of tungsten powder,although its total chemical energy decreases,it produces a higher behind-target overpressure at a lower impact velocity.A theoretical model is proposed to predict the reaction length of reactive material inside the projectile based on one-dimensional shock wave theory to understand this unexpected result.In addition,the deviation between the actual energy release and the theoretical calculation results,also the variation of overpressure rise time are analyzed and discussed.As the analyses show,when the SERMP successfully penetrates the cover plate,an increasing density of the reactive material inside the projectile always means that the delaying rarefaction wave effect,an increase of its internal pressure and strain rate levels.These factors lead to the increase of the overpressure limit velocity and reaction extent of the reactive material,while the overpressure rise time decreases. 展开更多
关键词 Reactive materials Steel-encased reactive material projectile Over-pressure effect Overpressure limit velocity Energy release
下载PDF
Reaction characteristic of PTFE/Al/Cu/Pb composites and application in shaped charge liner 被引量:3
9
作者 Huan-Guo Guo yuan-feng Zheng +3 位作者 Suo He qing-bo yu Chao Ge Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1578-1588,共11页
In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper(Cu) and plumbum(Pb) into traditional polytetrafluoroethylene/aluminum(PTFE/... In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper(Cu) and plumbum(Pb) into traditional polytetrafluoroethylene/aluminum(PTFE/Al), are studied. The thermal analysis and chemical reaction behavior of the PTFE/Al/Cu/Pb mixture are investigated by Differential Scanning Calorimetry(DSC),Thermo-gravimetry(TG), and Xray Diffraction(XRD) techniques. Then, the shaped charge liners with PTFE/Al/Cu/Pb reactive materials are fabricated, and the X-ray experiments show that they could form reactive jets with excellent performance under the detonation effects of the shaped charge. Based on that, the penetration experiments of shaped charge with PTFE/Al/Cu/Pb reactive liner against steel plates are carried out, and the results demonstrate that the PTFE/Al/Cu/Pb reactive jets could produce a deeper penetration depth compared to the traditional PTFE/Al reactive jets. Meanwhile, the PTFE/Al/Cu/Pb reactive jets also show significant inner-blast effects, leading to dramatically cracking or fragmentation behavior of the penetrated steel plates. This new PTFE/Al/Cu/Pb reactive liner shaped charge presents enhanced penetration behavior for steel targets that incorporates the penetration capability of a high-density and ductility jet, and the chemical energy release of PTFE-matrix reactive materials. 展开更多
关键词 Reactive materials Shaped charge Reactive liner Jet formation Penetration behavior
下载PDF
Fragmentation behavior of large-caliber PELE impacting RHA plate at low velocity 被引量:2
10
作者 Mo-ang Lei Hai-fu Wang +1 位作者 qing-bo yu yuan-feng Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期912-922,共11页
Impact experiments of large-caliber PELE with various inner-outer diameter ratio perforating RHA plate at low velocity were performed.Experimental results showed the size of perforated holes on plate,average diameter ... Impact experiments of large-caliber PELE with various inner-outer diameter ratio perforating RHA plate at low velocity were performed.Experimental results showed the size of perforated holes on plate,average diameter of damage area on witness plate,and number of behind-armor fragments will increase as d/D increasing from 0.72 to 0.84.Expansion and fragmentation of large-caliber PELE in this condition were also numerically studied with ANSYS Autodyn.Then,an analytical model accounting for an additional radial shock wave was presented to predict radial expansion velocity and fragmentation of jacket,as well as an empirical approach to estimate diameter of damage area.Calculation results by these approaches were in good agreement with experiments and numerical simulations.Further discussion revealed that Shock/rarefaction wave interactions behavior varying with inner-outer diameter ratio is an important mechanism resulting in different lateral effect by PELE projectiles with various configurations. 展开更多
关键词 PELE Enhanced lateral effect Penetration mechanics Behind-armor fragments
下载PDF
Shock-induced reaction behaviors of functionally graded reactive material 被引量:1
11
作者 Ying yuan Zhen-yang Liu +4 位作者 Suo He Chao Ge qing-bo yu yuan-feng Zheng Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1687-1698,共12页
In this paper,the ballistic impact experiments,including impact test chamber and impact double-spaced plates,were conducted to study the reaction behaviors of a novel functionally graded reactive material(FGRM),which ... In this paper,the ballistic impact experiments,including impact test chamber and impact double-spaced plates,were conducted to study the reaction behaviors of a novel functionally graded reactive material(FGRM),which was composed of polytetrafluoroethylene/aluminum(PTFE/Al)and PTFE/Al/bismuth trioxide(Bi_(2)O_(3)).The experiments showed that the impact direction of the FGRM had a significant effect on the reaction.With the same impact velocity,when the first impact material was PTFE/Al/Bi_(2)O_(3),compared with first impact material PTFE/Al,the FGRM induced higher overpressure in the test chamber and larger damaged area of double-spaced plates.The theoretical model,which considered the shock wave generation and propagation,the effect of the shock wave on reaction efficiency,and penetration behaviors,was developed to analyze the reaction behaviors of the FGRM.The model predicted first impact material of the FGRM with a higher shock impedance was conducive to the reaction of reactive materials.The conclusion of this study provides significant information about the design and application of reactive materials. 展开更多
关键词 Functionally graded reactive material PTFE/Al Reaction behavior Ballistic impact experiments Reaction efficiency
下载PDF
AtECB1/MRL7, a Thioredoxin-Like Fold Protein with Disulfide Reductase Activity, Regulates Chloroplast Gene Expression and Chloroplast Biogenesis in Arabidopsis thaliana 被引量:5
12
作者 qing-bo yu Qian Ma +6 位作者 Meng-Meng Kong Tuan-Tuan Zhao Xiao-Lei Zhang Que Zhou Chao Huang Kang Chong Zhong-Nan Yang 《Molecular Plant》 SCIE CAS CSCD 2014年第1期206-217,共12页
Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in... Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in chloroplast. Here, one thioredoxin-like fold protein, Arabidopsis early chloroplast biogenesis 1 (AtECB1), an allele of MRL7, was identified to regulate PEP function and chloroplast biogenesis. The knockout lines for AtECB1 displayed albino phenotype and impaired chloroplast development. The transcripts of PEP-dependent plastid genes were barely detected, suggesting that the PEP activity is almost lost in atecbl-1. Although AtECB1 was not identified in PEP complex, a yeast two-hybrid assay and pull-down experiments demonstrated that it can interact with Trx Z and FSD3, two intrinsic subunits of PEP complex, respectively. This indicates that AtECB1 may play a regulatory role for PEP-dependent plastid gene expression through these two subunits. AtECB1 contains a βαβαββα structure in the thioredoxin-like fold domain and lacks the typical C-X-X-C active site motif. Insulin assay demonstrated that AtECB1 harbors disulfide reductase activity in vitro using the purified recombinant AtECB1 protein. This showed that this thioredoxin-like fold protein, AtECB1 also has the thioredoxin activity. AtECB1 may play a role in thioredoxin signaling to regulate plastid gene expression and chloroplast development. 展开更多
关键词 ARABIDOPSIS THIOREDOXIN disulfide reductase activity chloroplast transcription chloroplast biogenesis.
原文传递
A Point Mutation in the Pentatricopeptide repeat Motif of the AtECB2 Protein Causes Delayed Chloroplast Development 被引量:12
13
作者 Zhi-Lin Cao qing-bo yu +3 位作者 yue Sun Yang Lu Yong-Lan Cui Zhong-Nan Yang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2011年第4期258-269,共12页
AtECB2 encodes a pentatricopeptide repeat(PPR) protein that regulates the editing of the plastid genes accD and ndhF.The ecb2-1 knockout shows an albino phenotype and is seedling lethal.In this study, we isolated an... AtECB2 encodes a pentatricopeptide repeat(PPR) protein that regulates the editing of the plastid genes accD and ndhF.The ecb2-1 knockout shows an albino phenotype and is seedling lethal.In this study, we isolated an allelic mutant of the AtECB2 gene,ecb2-2,which showed delayed greening phenotype but could complete their life cycle.In this mutant,the Thr^500 is converted to Ile^500 in the 13^th PPR motif of the AtECB2 protein.Transmission electron microscopy demonstrated that chloroplast development was delayed in both the cotyledons and leaves of the mutant.An investigation of the chloroplast gene expression profile indicated that PEP(plastid-encoded RNA polymerase) activity in ecb2-2 cotyledons was not obviously affected,whereas it was severely impaired in ecb2-1.This result suggests that the PEP activities cause the different phenotypes of the ecb2-1 and ecb2-2 mutants.The editing efficiency of the three editing sites of accD(C794 and C1568) and ndhF(C290) in the mutant was dynamically altered, which was in agreement with the phenotype.This result indicates that the editing efficiency of accD and ndhF in the ecb2-2 mutant is associated with a delayed greening phenotype.As ecb2-2 can survive and set seeds,this mutant can be used for further investigation of RNA editing and chloroplast development in arabidopsis. 展开更多
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部