The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and...The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time.展开更多
Pre-cold rolling with low reductions(<3%)was used to improve the mechanical properties of rolled ZK60 plates.The effects of rolling path on mechanical properties were investigated in detail.Both pre-cold rolling al...Pre-cold rolling with low reductions(<3%)was used to improve the mechanical properties of rolled ZK60 plates.The effects of rolling path on mechanical properties were investigated in detail.Both pre-cold rolling along the transverse direction(TD)and pre-cold rolling along the normal direction(ND)can increase the yield strength.However,pre-cold rolling along the TD is more effective than pre-cold rolling along the ND in improving the comprehensive mechanical properties.After pre-cold rolling to 3%reduction,the sample rolled along the TD and the sample rolled along the ND have similar tensile yield strength(~270 MPa).However,the former has a higher compressive yield strength,lower yield asymmetry and larger toughness than the latter.Moreover,pre-cold rolling can also enhance precipitation hardening effect.However,aging treatment cannot further improve the yield strength of pre-cold rolled samples.Finally,the related mechanism is discussed.展开更多
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter...Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.展开更多
The mechanical properties of AZ31 magnesium alloy sheets processed by different extrusion strain paths were examined in correlation with concurrent microstructure and texture evolution. The conventional extrusion(CE...The mechanical properties of AZ31 magnesium alloy sheets processed by different extrusion strain paths were examined in correlation with concurrent microstructure and texture evolution. The conventional extrusion(CE) and asymmetric extrusion(ASE) paths were performed on Mg alloy sheets. The textures at near surface and mid-layer of ASE sheets were various throughout sheet thickness direction as a result of extra asymmetric shear strain. This can stimulate the orientation of(0002) basal planes to incline approximately 12° toward the shear direction. Moreover, the basal texture of ASE sheet was weakened compared with CE one. Enhancing the ambient formability of extruded Mg alloy sheet fabricated by ASE path was accomplished by the tilted weak basal texture.展开更多
The mechanical behaviour of AZ31 magnesium alloy sheet with the extrusion joint (EJ) was evaluated. Extruded joint of AZ31 alloy sheets was obtained by the hot extrusion process. Tensile tests were carried out along...The mechanical behaviour of AZ31 magnesium alloy sheet with the extrusion joint (EJ) was evaluated. Extruded joint of AZ31 alloy sheets was obtained by the hot extrusion process. Tensile tests were carried out along the extrusion direction at room temperature, and both the non-uniform plastic deformation and the fracture behaviour were studied. It is found that the samples with EJ present significantly deteriorated mechanical properties compared with the EJ- free counterpart. Inhomogeneous rnicrostructure distribution around EJ zone brings in the uncoordinated deformation due to the high density of {1012} twins which were readily activated during plastic deformation.展开更多
基金supported by the Natural Science Foundation of Chongqing,China(Grant Nos.cstc2020jcyj-msxm X0544,CSTB2022NSCQ-MSX0352,CSTB2022NSCQ-MSX0891,cstc2020jcyj-msxm X0184)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202001416)National Natural Science Foundation of China(Grant Nos.11847077,52001028)。
文摘The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time.
基金financially supported by the National Natural Science Foundation of China (No. 51601154)the Fundamental Research Funds for the Central Universities, China (No. XDJK2019B003)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 17KJD430006)Chongqing Municipal Education Commission, China (No. KJZDK202001502)
文摘Pre-cold rolling with low reductions(<3%)was used to improve the mechanical properties of rolled ZK60 plates.The effects of rolling path on mechanical properties were investigated in detail.Both pre-cold rolling along the transverse direction(TD)and pre-cold rolling along the normal direction(ND)can increase the yield strength.However,pre-cold rolling along the TD is more effective than pre-cold rolling along the ND in improving the comprehensive mechanical properties.After pre-cold rolling to 3%reduction,the sample rolled along the TD and the sample rolled along the ND have similar tensile yield strength(~270 MPa).However,the former has a higher compressive yield strength,lower yield asymmetry and larger toughness than the latter.Moreover,pre-cold rolling can also enhance precipitation hardening effect.However,aging treatment cannot further improve the yield strength of pre-cold rolled samples.Finally,the related mechanism is discussed.
基金supported by the National Natural Science Foundation of China (50725826)Specific Research on Cable-reinforced Membranes with Super Span and Complex Single-shell Structures of Expo Axis (08dz0580303)Shanghai Postdoctoral Fund (10R21416200)
文摘Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.
基金financially supported by the Postdoctoral Science Foundation of China(Nos.2015M572451 and2015M572447)Chongqing Science and Technology Commission(Nos.cstc2014fazktjcsf0112,cstc2014jcyj A50019 and cstc2014-fazktjcsf50004)+2 种基金National Natural Science Foundation of China(No.51501025)Foundation of Chongqing Municipal Education Committee(No.KJ1401321)the Research Foundation of Chongqing University of Science and Technology(Nos.CK2013B13 and CK2014Z21)
文摘The mechanical properties of AZ31 magnesium alloy sheets processed by different extrusion strain paths were examined in correlation with concurrent microstructure and texture evolution. The conventional extrusion(CE) and asymmetric extrusion(ASE) paths were performed on Mg alloy sheets. The textures at near surface and mid-layer of ASE sheets were various throughout sheet thickness direction as a result of extra asymmetric shear strain. This can stimulate the orientation of(0002) basal planes to incline approximately 12° toward the shear direction. Moreover, the basal texture of ASE sheet was weakened compared with CE one. Enhancing the ambient formability of extruded Mg alloy sheet fabricated by ASE path was accomplished by the tilted weak basal texture.
基金the financial supports from China Postdoctoral Science Foundation(Nos.2015M572451,2015M581350)Chongqing Postdoctoral Research Special Foundation(No.Xm2015015)+1 种基金Chongqing Science and Technology Commission(No.cstc2014fazktjcsf50004)National Natural Science Foundation of China(No.51501025)
文摘The mechanical behaviour of AZ31 magnesium alloy sheet with the extrusion joint (EJ) was evaluated. Extruded joint of AZ31 alloy sheets was obtained by the hot extrusion process. Tensile tests were carried out along the extrusion direction at room temperature, and both the non-uniform plastic deformation and the fracture behaviour were studied. It is found that the samples with EJ present significantly deteriorated mechanical properties compared with the EJ- free counterpart. Inhomogeneous rnicrostructure distribution around EJ zone brings in the uncoordinated deformation due to the high density of {1012} twins which were readily activated during plastic deformation.