Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, r...Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are sigma = 9.77 erg/cm(2) and sigma (e) = 155.48 erg/cm(2), respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent (n) over bar was determined to be 3.45. The activation energies (DeltaE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.展开更多
A novel naphthyl-based self-catalyzed phthalonitrile monomer was prepared via nucleophilic displacement reaction. The structure was characterized by Fourier infrared spectrum (FT-IR) and nuclear magnetic resonance ...A novel naphthyl-based self-catalyzed phthalonitrile monomer was prepared via nucleophilic displacement reaction. The structure was characterized by Fourier infrared spectrum (FT-IR) and nuclear magnetic resonance (^1H NMR). The polymerization mechanism was explored. Thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which demonstrated self-promoted behavior and excellent heat resistance.展开更多
基金This research was funded by the National Natural Science Foundation of China and subsidized by the Special Funds for Major State Basic Research Projects (G1999064800).
文摘Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are sigma = 9.77 erg/cm(2) and sigma (e) = 155.48 erg/cm(2), respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent (n) over bar was determined to be 3.45. The activation energies (DeltaE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.
基金supported by Program for Changjiang Scholars and Innovative Research Team in University (No.IRT13060)the financial support from Natural Science Foundation of Hebei Province (No.E2014202033)
文摘A novel naphthyl-based self-catalyzed phthalonitrile monomer was prepared via nucleophilic displacement reaction. The structure was characterized by Fourier infrared spectrum (FT-IR) and nuclear magnetic resonance (^1H NMR). The polymerization mechanism was explored. Thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which demonstrated self-promoted behavior and excellent heat resistance.