The dynamics of C+H_(2)→H+CH reaction is theoretically studied using the quasiclassical trajectory and quantum mechanical wave packet methods.The analysis of reaction probabilities,integral cross sections,and rate co...The dynamics of C+H_(2)→H+CH reaction is theoretically studied using the quasiclassical trajectory and quantum mechanical wave packet methods.The analysis of reaction probabilities,integral cross sections,and rate coefficients reveal the essential Coriolis coupling effects in the quantum mechanical wave packet calculations.The calculated polarizationdependent differential cross section,P(θ_(r))and P(Φ_(r))show that the j'of product rotational angular momentum is not only aligned along the y axis and the direction of the vector x+z,but also strongly oriented along the positive y axis.展开更多
Quasi-classical trajectory (QCT) calculations are employed for the reaction F + HO(0,0)→HF + O based on the adiabatic potential energy surface (PES) of the ground 3A″triplet state. The average rotational alignment f...Quasi-classical trajectory (QCT) calculations are employed for the reaction F + HO(0,0)→HF + O based on the adiabatic potential energy surface (PES) of the ground 3A″triplet state. The average rotational alignment factor 【P2(j′·k)】 as a function of collision energy and the four polarization dependent generalized differential cross sections have been calculated in the center-of-mass (CM) frame, separately. The distribution P(θr) of the angle between k and j′, the distribution P(θr) of dihedral angle denoting k-k′-j′ correlation, and the angular distribution P(θr, Φr) of product rotational vectors in the form of polar plots are calculated as well. The effect of Heavy-Light-Heavy (HLH) mass combination and atom F’s relatively strong absorbability to charges on the alignment and the orientation of product molecule HF rotational angular momentum vectors j′ is revealed.展开更多
We take H^(+) +CO as a prototype to analyze the effect of ion or proton collision on molecular orientation modulated by a two-color shaped pulse combined with the time-delayed terahertz(THz) pulse. Through examining t...We take H^(+) +CO as a prototype to analyze the effect of ion or proton collision on molecular orientation modulated by a two-color shaped pulse combined with the time-delayed terahertz(THz) pulse. Through examining the effect of ion collision on the molecular orientation, we found that when the impact parameter and collisional velocity have weak inverse influences on the maximal orientation degree, the appropriate two-color and THz field intensity employed can improve the molecular orientation degree. The carrier envelope phase and frequency of the THz laser pulse as well as the temperature also have certain influence on the collision-induced molecular orientation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904394 and 12004216)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QA064)。
文摘The dynamics of C+H_(2)→H+CH reaction is theoretically studied using the quasiclassical trajectory and quantum mechanical wave packet methods.The analysis of reaction probabilities,integral cross sections,and rate coefficients reveal the essential Coriolis coupling effects in the quantum mechanical wave packet calculations.The calculated polarizationdependent differential cross section,P(θ_(r))and P(Φ_(r))show that the j'of product rotational angular momentum is not only aligned along the y axis and the direction of the vector x+z,but also strongly oriented along the positive y axis.
基金supported by the National Natural Science Founda-tion of China (Grant No. 10574083)the Natural Science Foundation of Shandong Province of China (Grant No. Y2006A23)Partial financial support from the National Basic Research Program of China is also gratefully acknowledged (Grant No. 2006CB806000)
文摘Quasi-classical trajectory (QCT) calculations are employed for the reaction F + HO(0,0)→HF + O based on the adiabatic potential energy surface (PES) of the ground 3A″triplet state. The average rotational alignment factor 【P2(j′·k)】 as a function of collision energy and the four polarization dependent generalized differential cross sections have been calculated in the center-of-mass (CM) frame, separately. The distribution P(θr) of the angle between k and j′, the distribution P(θr) of dihedral angle denoting k-k′-j′ correlation, and the angular distribution P(θr, Φr) of product rotational vectors in the form of polar plots are calculated as well. The effect of Heavy-Light-Heavy (HLH) mass combination and atom F’s relatively strong absorbability to charges on the alignment and the orientation of product molecule HF rotational angular momentum vectors j′ is revealed.
基金This work was supported by the National Natural Science Foundation of China(No.11674198)the Taishan Scholar Project of Shandong Province(No.ts201511025).
文摘We take H^(+) +CO as a prototype to analyze the effect of ion or proton collision on molecular orientation modulated by a two-color shaped pulse combined with the time-delayed terahertz(THz) pulse. Through examining the effect of ion collision on the molecular orientation, we found that when the impact parameter and collisional velocity have weak inverse influences on the maximal orientation degree, the appropriate two-color and THz field intensity employed can improve the molecular orientation degree. The carrier envelope phase and frequency of the THz laser pulse as well as the temperature also have certain influence on the collision-induced molecular orientation.