Aqueous zinc-ion batteries have advantages over lithium-ion batteries,such as low cost,and good safety.However,their development is currently facing several challenges.One of the main critical challenges is their poor...Aqueous zinc-ion batteries have advantages over lithium-ion batteries,such as low cost,and good safety.However,their development is currently facing several challenges.One of the main critical challenges is their poor electrode–electrolyte interface.Addressing this requires understanding the physics and chemistry at the electrode–electrolyte interface,including the cathode-electrolyte interface and anodeelectrolyte interface.This review first identifies and analyses the interfacial challenges of aqueous zincion batteries.Then,it discusses the design strategies for addressing the defined interfacial issues from the perspectives of electrolyte optimization,electrode modification,and separator improvement.Finally,it provides corrective recommendations and strategies for the rational design of electrode–electrolyte interface in aqueous zinc-ion batteries towards their high-performance and reliable energy storage.展开更多
Sodium-ion batteries have received remarkable attention as next-generation high-performance electrochemical energy storage devices because of their cost effectiveness and the broad geographical distribution of sodium....Sodium-ion batteries have received remarkable attention as next-generation high-performance electrochemical energy storage devices because of their cost effectiveness and the broad geographical distribution of sodium. As a critical component of sodium-ion batteries, anode materials, especially nanostructured anodes, have a significant effect on the electrochemical performance of sodium-ion batteries. Recent research indicates that phosphorus and metal phosphides show great promise as anode candidates for sodium-ion batteries because of their low cost and relatively high theoretical gravimetric and volumetric specific capacities. In this review, we systematically summarize recent research progress on state-of-the-art nanostructured phosphorus and phosphides, including the synthetic strategies, Na-storage mechanisms, and the relationship between the nanostructure and electrochemical performance. Moreover, we present an overview of future challenges and opportunities based on current developments.展开更多
Owing to the natural abundance and low cost of sodium resources,sodium-ion batteries(SIBs)have drawn considerable attention for state-of-the-art power storage devices over the last few years.To enable advanced SIBs wi...Owing to the natural abundance and low cost of sodium resources,sodium-ion batteries(SIBs)have drawn considerable attention for state-of-the-art power storage devices over the last few years.To enable advanced SIBs with a brighter future,great effort has been made,not only through optimizing the electrode materials,but also with rationally designing various electrolyte systems.Among the available electrolyte systems,organic electrolytes,especially those based on esters as well as ethers,are the most promising ones for practical application in the foreseeable future,due to their numerous inherent advantages.This review is concerned with the recent research progresses on organic electrolytes for SIBs,focusing on etherbased and ester-based ones.展开更多
基金The Australian Research Council(ARC)is acknowledged for providing funding under projects FL170100101 and DP200102573。
文摘Aqueous zinc-ion batteries have advantages over lithium-ion batteries,such as low cost,and good safety.However,their development is currently facing several challenges.One of the main critical challenges is their poor electrode–electrolyte interface.Addressing this requires understanding the physics and chemistry at the electrode–electrolyte interface,including the cathode-electrolyte interface and anodeelectrolyte interface.This review first identifies and analyses the interfacial challenges of aqueous zincion batteries.Then,it discusses the design strategies for addressing the defined interfacial issues from the perspectives of electrolyte optimization,electrode modification,and separator improvement.Finally,it provides corrective recommendations and strategies for the rational design of electrode–electrolyte interface in aqueous zinc-ion batteries towards their high-performance and reliable energy storage.
文摘Sodium-ion batteries have received remarkable attention as next-generation high-performance electrochemical energy storage devices because of their cost effectiveness and the broad geographical distribution of sodium. As a critical component of sodium-ion batteries, anode materials, especially nanostructured anodes, have a significant effect on the electrochemical performance of sodium-ion batteries. Recent research indicates that phosphorus and metal phosphides show great promise as anode candidates for sodium-ion batteries because of their low cost and relatively high theoretical gravimetric and volumetric specific capacities. In this review, we systematically summarize recent research progress on state-of-the-art nanostructured phosphorus and phosphides, including the synthetic strategies, Na-storage mechanisms, and the relationship between the nanostructure and electrochemical performance. Moreover, we present an overview of future challenges and opportunities based on current developments.
基金supported by the Australian Renewable Energy Agency(G00849).
文摘Owing to the natural abundance and low cost of sodium resources,sodium-ion batteries(SIBs)have drawn considerable attention for state-of-the-art power storage devices over the last few years.To enable advanced SIBs with a brighter future,great effort has been made,not only through optimizing the electrode materials,but also with rationally designing various electrolyte systems.Among the available electrolyte systems,organic electrolytes,especially those based on esters as well as ethers,are the most promising ones for practical application in the foreseeable future,due to their numerous inherent advantages.This review is concerned with the recent research progresses on organic electrolytes for SIBs,focusing on etherbased and ester-based ones.