To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we inv...To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we investigate the DPFSP by minimizing a makespan criterion under the constraint of sequence-dependent setup times.To solve DPFSPs,significant developments of some metaheuristic algorithms are necessary.In this context,a simple and effective improved iterated greedy(NIG)algorithm is proposed to minimize makespan in DPFSPs.According to the features of DPFSPs,a two-stage local search based on single job swapping and job block swapping within the key factory is designed in the proposed algorithm.We compare the proposed algorithm with state-of-the-art algorithms,including the iterative greedy algorithm(2019),iterative greedy proposed by Ruiz and Pan(2019),discrete differential evolution algorithm(2018),discrete artificial bee colony(2018),and artificial chemical reaction optimization(2017).Simulation results show that NIG outperforms the compared algorithms.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(Nos.61803192,61973203,61966012,61773192,61603169,61773246,and 71533001)Thanks for the support of Shandong province colleges and universities youth innovation talent introduction and education program.
文摘To meet the multi-cooperation production demand of enterprises,the distributed permutation flow shop scheduling problem(DPFSP)has become the frontier research in the field of manufacturing systems.In this paper,we investigate the DPFSP by minimizing a makespan criterion under the constraint of sequence-dependent setup times.To solve DPFSPs,significant developments of some metaheuristic algorithms are necessary.In this context,a simple and effective improved iterated greedy(NIG)algorithm is proposed to minimize makespan in DPFSPs.According to the features of DPFSPs,a two-stage local search based on single job swapping and job block swapping within the key factory is designed in the proposed algorithm.We compare the proposed algorithm with state-of-the-art algorithms,including the iterative greedy algorithm(2019),iterative greedy proposed by Ruiz and Pan(2019),discrete differential evolution algorithm(2018),discrete artificial bee colony(2018),and artificial chemical reaction optimization(2017).Simulation results show that NIG outperforms the compared algorithms.