期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fluid Evolution and Scheelite Precipitation Mechanism of the Large-Scale Shangfang Quartz-Vein-Type Tungsten Deposit, South China: Constraints from Rare Earth Element(REE) Behaviour during Fluid/Rock Interaction 被引量:1
1
作者 Runsheng Chen Luyun Zhu +2 位作者 Shao-Yong Jiang Ying Ma qinghai hu 《Journal of Earth Science》 SCIE CAS CSCD 2020年第4期635-652,共18页
Unlike classic skarn-type scheelite deposits directly acquiring sufficient Ca2+ from surrounding limestones, all of the scheelite orebodies of the Shangfang tungsten(W) deposit occur mainly in amphibolite, and this pr... Unlike classic skarn-type scheelite deposits directly acquiring sufficient Ca2+ from surrounding limestones, all of the scheelite orebodies of the Shangfang tungsten(W) deposit occur mainly in amphibolite, and this provides a new perspective on the mineralization mechanism of W deposits. The ability of hydrothermal scheelite(CaWO4) to bind REE3+ in their Ca2+ crystal lattices makes it a useful mineral for tracing fluid-rock interactions in hydrothermal mineralization systems. In this study, the REE compositions of scheelite and some silicate minerals were measured systematically in-situ by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) to assess the extent of fluid-rock interactions for the Late Mesozoic quartz-vein-type Shangfang W deposits. According to the variations in CaO and REE among scheelite and silicate minerals, the amphibole and actinolite in amphibolite may be able to release large amounts of Ca2+ and REE3+ into the ore-forming fluids during chlorite alteration, which is critical for scheelite precipitation. Furthermore, an improved batch crystallization model was adopted for simulating the process of scheelite precipitation and fluid evolution. The results of both the in-situ measurements and model calculations demonstrate that the precipitation of early-stage scheelite with medium rare-earth elements(MREE)-rich and [Eu/Eu*]N<1. The early-stage scheelite would consume more MREE than LREE and HREE of fluid, which will gradually produce residual fluids with strong MREE-depletion and [Eu/Eu*]N>1. Even though the partition coefficient of REE is constant, the later-stage scheelite will also inherit a certain degree of MREE-depletion and [Eu/Eu*]N future from the residual fluids. As a common mineral, sheelite forms in various types of hydrothermal ore deposits(e.g., tungsten and gold deposits). Hence, the improved batch crystallization model is also possible for obtaining detailed information regarding fluid evolution for other types of hydrothermal deposits. The results from model calculations also illustrate that the Eu anomalies of scheelite are not an effective index correlated to oxygen fugacity of fluids but rather are dominantly controlled by the continuous precipitation of scheelite. 展开更多
关键词 SCHEELITE quartz vein type REE pattern Eu anomaly fluid evolution
原文传递
Predicting heavy metals' adsorption edges and adsorption isotherms on MnO_2 with the parameters determined from Langmuir kinetics 被引量:3
2
作者 qinghai hu Zhongjin Xiao +2 位作者 Xinmei Xiong Gongming Zhou Xiaohong Guan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第1期207-216,共10页
Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics,edge, and isotherm data with one p H... Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics,edge, and isotherm data with one p H-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model(MLK model) and modified Langmuir isotherm model(MLI model) incorporating p H factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH 3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model(MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. 展开更多
关键词 Heavy metals Adsorption edge Adsorption isotherm Adsorption constants
原文传递
Simultaneous removal of arsenate and fluoride from water by AI-Fe (hydr)oxides
3
作者 Junlian QIAO Zimin CUI +2 位作者 Yuankui SUN qinghai hu Xiaohong GUAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第2期169-179,共11页
A1-Fe (hydr)oxides with different A1/Fe molar ratios (4:1, 1:1, 1:4, 0:1) were prepared using a co- precipitation method and were then employed for simultaneous removal of arsenate and fluoride. The 4A1 : Fe ... A1-Fe (hydr)oxides with different A1/Fe molar ratios (4:1, 1:1, 1:4, 0:1) were prepared using a co- precipitation method and were then employed for simultaneous removal of arsenate and fluoride. The 4A1 : Fe was superior to other adsorbents for removal of arsenate and fluoride in the pH range of 5.0-9.0. The adsorption capacity of the A1-Fe (hydr)oxides for arsenate and fluoride at pH 6.50.3 increased with increasing A1 content in the adsorbents. The linear relationship between the amount of OH released from the adsorbent and the amount of arsenate or fluoride adsorbent by 4A1 : Fe indicated that the adsorption of arsenate and fluoride by A1- Fe (hydr)oxides was realized primarily through quantita- tive ligand exchange. Moreover, there was a very good correlation between the surface hydroxyl group densities of A1-Fe (hydr)oxides and their adsorption capacities for arsenate or fluoride. The highest adsorption capacity for arsenate and fluoride by 4A1 : Fe is mainly ascribed to its highest surface hydroxyl group density besides its largest pHpzc. The dosage of adsorbent necessary to remove arsenate and fluoride to meet the drinking water standard was mainly determined by the presence of fluoride since fluoride was generally present in groundwater at much higher concentration than arsenate. 展开更多
关键词 A1-Fe (hydr)oxides GROUNDWATER ADSORPTION hydroxyl group ligand exchange
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部