期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research Progress on the Efficacy and Safety of Different Basal Insulins in the Treatment of Type 2 Diabetes Mellitus
1
作者 Juan Xu Shanshan Zhang +2 位作者 Guohui Zhang Lihua Huang qinghua yi 《Journal of Clinical and Nursing Research》 2024年第6期21-25,共5页
Objective:To evaluate the efficacy and safety of different basal insulins in the treatment of type 2 diabetes mellitus(T2DM).Methods:The current research progress on different basal insulins was evaluated,with efficac... Objective:To evaluate the efficacy and safety of different basal insulins in the treatment of type 2 diabetes mellitus(T2DM).Methods:The current research progress on different basal insulins was evaluated,with efficacy indicators including fasting plasma glucose(FPG)and glycated hemoglobin(HbAic),and safety indicators focusing mainly on weight change and the incidence of hypoglycemia.Results:Several different basal insulins showed similar metabolic control effects in terms of fasting plasma glucose and glycated hemoglobin.However,the risk of hypoglycemia was lower with insulin glargine 300(Glar-300),insulin degludec 100(Deg-100),and insulin degludec 200(Deg-200)compared to insulin glargine 100(Glar-100).Additionally,Glar-300 had the least impact on weight.Conclusion:For the treatment of T2DM,different basal insulins have similar therapeutic effects,but there are differences in the incidence of hypoglycemic events and their impact on weight.Rational insulin selection and dosage adjustments should be made based on the different patient groups. 展开更多
关键词 Basal insulin Type 2 diabetes mellitus HYPOGLYCEMIA
下载PDF
Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values 被引量:11
2
作者 Jianwen Huang Yanrong Li +6 位作者 YufeiXia Juntong Zhu qinghua yi Hao Wang Jie Xiong yinghui Sun Guifu Zou 《Nano Research》 SCIE EI CAS CSCD 2017年第3期1010-1020,共11页
High-performance electrocatalysts for water splitting at all pH values have attracted considerable interest in the field of sustainable hydrogen evolution. Herein, we report an efficient electrocatalyst with a nanocry... High-performance electrocatalysts for water splitting at all pH values have attracted considerable interest in the field of sustainable hydrogen evolution. Herein, we report an efficient electrocatalyst with a nanocrystalline cobalt phosphide (COP) network for water splitting in the pH range of 0-14. The novel flexible electrocatalyst is derived from a desirable nanocrystalline CoP network grown on a conductive Hastelloy belt. This kind of self-supported CoP network is directly used as an electrocatalytic cathode for hydrogen evolution. The nanocrystalline network structure results in superior performance with a low onset overpotential of N45 mV over a broad pH range of 0 to 14 and affords a catalytic current density of 100 mA-cm 2 even in neutral media. The CoP network exhibits excellent catalytic properties not only at extreme pH values (0 and 14) but also in neutral media (pH = 7), which is comparable to the behavior of state-of-the-art platinum-based metals. The system exhibits an excellent flexible property and maintains remarkable catalytic stability during continuous 100-h-long electrolysis even after 100 cycles of bending/extending from 100° to 250°. 展开更多
关键词 hydrogen evolution CoP network NANOCRYSTALLINE FLEXIBLE all-pH
原文传递
Cu2BaSn(S,Se)4薄膜研究进展 被引量:1
3
作者 易庆华 谢娟 +1 位作者 王晨 邹贵付 《科学通报》 EI CAS CSCD 北大核心 2019年第32期3297-3308,共12页
Cu2BaSn(S,Se)4薄膜是在Cu2ZnSn(S,Se)4的基础上发展提出的一类新型半导体材料.具有与Cu2ZnSn(S,Se)4相类似的性质特点,如直接带隙、带隙可调(1.5~2.1 e V)、p型半导体特性、大吸光系数、高载流子迁移率和良好化学稳定性等.更重要的是,C... Cu2BaSn(S,Se)4薄膜是在Cu2ZnSn(S,Se)4的基础上发展提出的一类新型半导体材料.具有与Cu2ZnSn(S,Se)4相类似的性质特点,如直接带隙、带隙可调(1.5~2.1 e V)、p型半导体特性、大吸光系数、高载流子迁移率和良好化学稳定性等.更重要的是,Cu2ZnSn(S,Se)4中Cu和Zn原子半径相似,易出现铜锌位置互换形成反位缺陷.而Cu2BaSn(S,Se)4中Ba和Cu的原子半径相差较大,反位缺陷形成能较高,不易形成缺陷.因此通过将Ba取代Zn后形成的Cu2BaSn(S,Se)4能缓解反位缺陷和带边拖尾等问题,使得Cu2BaSn(S,Se)4成为了替代Cu2ZnSn(S,Se)4的可选材料之一.另外Cu2BaSn(S,Se)4具有优异的光电特性,使其成为光电领域非常重要的材料之一.本文主要阐述了近几年来Cu2BaSn(S,Se)4薄膜的研究进展.包括基本特性,如结构和吸光特性等、各种生长方法的优缺点和在太阳能电池及光电化学等领域的研究进展情况.最后总结并展望了Cu2BaSn(S,Se)4的应用前景,为未来的研究提供方向. 展开更多
关键词 Cu2BaSn(S Se)4 Cu2ZnSn(S Se)4 反位缺陷 太阳能电池 光电化学
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部