期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
Cationic ordering transition in oxygen-redox layered oxide cathodes
1
作者 Xinyan Li Ang Gao +10 位作者 qinghua zhang Hao Yu Pengxiang Ji Dongdong Xiao Xuefeng Wang Dong Su Xiaohui Rong Xiqian Yu Hong Li Yong-Sheng Hu Lin Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期197-206,共10页
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na... Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes. 展开更多
关键词 cationic ordering layered oxide cathodes oxygen redox sodium-ion batteries
下载PDF
In-Situ Atomic-Scale Observation of Brownmillerite to Ruddlesden-Popper Phase Transition Tuned by Epitaxial Strain in Cobaltites
2
作者 林挺 高昂 +6 位作者 汤哲歆 林炜光 孙慕华 张庆华 王雪锋 郭尔佳 谷林 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期152-158,共7页
Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelate... Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films. 展开更多
关键词 STRAINED Phase OXIDES
下载PDF
中国城市的人口规模合理吗?——基于2020年人口普查的再探究
3
作者 张庆华 滕飞 +1 位作者 翟颖佳 罗兆勇 《经济管理学刊》 2023年第3期1-34,共34页
本文基于中国2020年人口普查、夜间灯光及各类社会经济指标,并且利用最新文献中运用大数据聚类算法界定的城区空间范围,精准地测度了当前中国212个主要城市城区的实际人口规模。在此基础上实证估计了单体城市人均产出水平与人口规模之... 本文基于中国2020年人口普查、夜间灯光及各类社会经济指标,并且利用最新文献中运用大数据聚类算法界定的城区空间范围,精准地测度了当前中国212个主要城市城区的实际人口规模。在此基础上实证估计了单体城市人均产出水平与人口规模之间的倒U形关系,并对中国各城市人口规模合适度及相应的以人均GDP度量的效率损失进行了测算。结果表明:尽管过去十年中国城市系统的人口规模总体在扩张,但仍有80%以上的城市人口规模偏小;与此同时,少数超特大城市人口过多的现象突出。规模不合理造成的效率损失明显,有29%的城市损失超过50%。本文进一步探讨了优化城市规模的路径,发现劳动力和资本等要素市场的一体化有利于促进城市规模合理化。本文的研究深化了对当前中国城市系统规模分布的规律性认识,丰富了未来优化城市布局的思路。 展开更多
关键词 城市人口规模 产业结构 空间结构 要素市场
下载PDF
钒掺杂钨青铜内通道氨配位的钌单原子用于高效析氢反应
4
作者 韩策 梅丙宝 +8 位作者 张庆华 张慧敏 姚鹏飞 宋平 宫雪 崔培昕 姜政 谷林 徐维林 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第8期80-89,共10页
通过电解水制备氢气是实现“碳中和”目标的理想途径之一.因此,可在全p H条件下使用的氢析出(HER)催化剂的研发是近年来电催化领域的研究热点.原子级分散的催化剂,能够在保留铂族金属(PGM)固有活性的同时,降低催化剂中PGM的用量.虽然可... 通过电解水制备氢气是实现“碳中和”目标的理想途径之一.因此,可在全p H条件下使用的氢析出(HER)催化剂的研发是近年来电催化领域的研究热点.原子级分散的催化剂,能够在保留铂族金属(PGM)固有活性的同时,降低催化剂中PGM的用量.虽然可以通过X射线吸收光谱(XAS)来表征原子分散的PGM电催化剂的配位环境,但目前对原子空间分布的控制仍然具有挑战.本文制备了钒掺杂钨青铜内通道氨配位的钌单原子催化剂(Ru/V-NHWO),用于全p H范围内的HER反应.采用X射线衍射(XRD)、高角环形暗场扫描透射电镜(HAADF-STEM)、X射线光电子能谱(XPS)和原位X射线吸收光谱(XAS)等进行表征,研究了钌单原子与V-NHWO载体的结合方式以及构效关系,并采用密度泛函理论(DFT)计算探索了催化剂中诸多位点的活性贡献.在1 mol/LKOH, 0.5 mol/L H_(2)SO_(4)和1 mol/L磷酸盐缓冲溶液中,其在10 m Acm^(-2)下的过电位分别为28.0, 29.6和40.6 m V.同时,在过电位100 m V时,质量活性分别达到3930, 1941和602.8 m Amg^(-1)Ru,数倍于同等条件下的商业铂碳.XRD结果表明,钌的引入可以确保催化剂在氩气条件下热解后仍保持六方钨铵青铜晶相,证明钌与钨铵青铜六方晶体通道内氨物种,即“通道氨”的结合.HAADF-STEM结果表明,钌原子与NHWO间存在强烈相互作用,有助于提升HER性能.XPS和XAS结果表明, W5+信号出现在引入钌后,峰位置的结合能增加且峰面积降低,说明钌与通道氨之间存在相互作用.N的XPS结果表明,钌的引入导致了金属氨键的形成.XAS结果表明, Ru/V-NHWO/CC中钌单原子和钌团簇共存,钌单原子与通道氨配位,并且钒的引入会诱发V-NHWO中金属键长缩短,这表明催化剂的金属性得到了提升,有利于改善其导电性.采用DFT计算进一步研究了HER活性的来源.相比于V-NHWO载体和钌团簇修饰的V-NHWO,以单原子形式结合的钌具有更低的水解离能垒,该能垒在氨桥接的钌双原子垂直插入、钒掺杂和多通道插入等多种因素作用下进一步降低.同时,氢中间体结合能得到了相应的优化而趋近于0 e V.此外,差分电荷密度模拟结果表明,氢中间体结合后, V-NHWO对于钌单原子存在明显的供电子行为,有利于HER动力学过程.综上,本工作报道了金属载体对于高分散金属原子空间分布调控的重要作用,可为设计和构筑可应用于诸多能源转换过程的新型原子级分散催化剂提供参考. 展开更多
关键词 单原子钌 通道氨 六方晶通道 钨青铜 析氢反应
下载PDF
Nickel single atom overcoordinated active sites to accelerate the electrochemical reaction kinetics for Li-S cathode 被引量:2
5
作者 Juan Zhu Xinyue Wang +13 位作者 Tian Ke Mingji Jia Biyu Jin Yuanyuan Li Qiwei Yang Lanhui Ren Yongyuan Ren Dangguo Cheng Jianguo Lu Xiang Gao Qinggang He Yang Hou Xiaoli Zhan qinghua zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期203-210,I0006,共9页
Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their a... Lithium-sulfur(Li-S)batteries with high theoretical energy density are promising advanced energy storage devices.However,shuttling of dissolute lithium polysulfide(LiPSs)and sluggish conversion kinetics impede their applications.Herein,single nickel(Ni)atoms on two-dimensional(2D)nitrogen(N)-doped carbon with Ni-N_(4)-O overcoordinated structure(SANi-N_(4)-O/NC)are prepared and firstly used as a sulfur host of Li-S batteries.Due to the efficient polysulfides traps and highly LiPSs conversion effect of SANi-N_(4)-O/NC,the electrochemical performance of Li-S batteries obviously improved.The batteries can well operate even under high sulfur loading(5.8 mg cm^(-2))and lean electrolyte(6.1μL mg^(-1))condition.Meanwhile,density functional theory(DFT)calculations demonstrate that Ni single atom’s active sites decrease the energy barriers of conversion reactions from Li_(2)S_(8)to Li2S due to the strong interaction between SANi-N_(4)-O/NC and LiPSs.Thus,the kinetic conversion of LiPSs was accelerated and the shuttle effect is suppressed on SANi-N_(4)-O/NC host.This study provides a new design strategy for a 2D structure with single-atom overcoordinated active sites to facilitate the fast kinetic conversion of LiPSs for Li-S cathode. 展开更多
关键词 Nickel single atom catalyst Ni-N_(4)-O sites 2D N-doped carbon Li-S batteries Shuttle effect
下载PDF
Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance 被引量:1
6
作者 Abid Ali Bilal Ul Amin +7 位作者 Wenwu Yu Taijiang Gui Weiwei Cong Kai zhang Zheming Tong Jiankun Hu Xiaoli Zhan qinghua zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期80-88,共9页
Biofouling, which comprises the absorption of proteins and the adhesion of bacteria to the surface of living entities, is a severe concern for the maritime sector since it ultimately leads to hydrodynamic drag,resulti... Biofouling, which comprises the absorption of proteins and the adhesion of bacteria to the surface of living entities, is a severe concern for the maritime sector since it ultimately leads to hydrodynamic drag,resulting in a higher increase in fuel consumption. As a result, polymer resins are crucial in the marine sector for anti-biofouling coatings. In this work, the poly(caprolactone-ethylene glycol-caprolactone)-p olyurethane(PECL-PU) are prepared through ε-caprolactone(CL), poly(ethylene glycol)(PEG), 4,4'-methylene bis(cyclohexyl isocyanate) and 1,4 butanediol. Our study demonstrate that the PECL-PU copolymer degraded in artificial seawater(5.21%), enzymatic solution(12.63%), and seawater(13.75%)due to the presence of PEG segments in the laboratory-based test under static condition. Because the addition of PEG segments are increased the polymer's amorphous area and decreased the crystallization of the polycaprolactone(PCL) in the copolymer, as demonstrated by differential scanning calorimetry, X-ray diffraction, and water contact angle studies. Therefore, the hydrolysis rates of PECL-PU were higher than the caprolactone-co-polyurethane(CL-PU). The antifouling test showed that PECL-PU3 copolymer had about 90.29% protein resistance, 85.2% Escherichia coli(E. coli) reduction and 94.61% marine diatom Navicula incerta reduction comparison to the control. We have developed an eco-friendly and inexpensive promising degradable polyurethane for reduction of bacterial biofilm, which can preserve the formation of biofouling on marine coating under practical sea conditions. 展开更多
关键词 CAPROLACTONE PEG segments Biodegradable polyurethane BIOFOULING Hydrolytic degradation
下载PDF
Experimental Realization of an Intrinsic Magnetic Topological Insulator 被引量:10
7
作者 龚演 郭景文 +21 位作者 李佳恒 朱科静 廖孟涵 刘效治 张庆华 谷林 唐林 冯硝 张定 李渭 宋灿立 王立莉 于浦 陈曦 王亚愚 姚宏 段文晖 徐勇 张首晟 马旭村 薛其坤 何珂 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第7期66-71,共6页
An intrinsic magnetic topological insulator(TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel ... An intrinsic magnetic topological insulator(TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi2Te4, by alternate growth of a Bi2Te3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way. 展开更多
关键词 INTRINSIC MAGNETIC STOICHIOMETRIC MAGNETIC well-controlled WAY
下载PDF
Integrated System of Solar Cells with Hierarchical NiCo2O4 Battery-Supercapacitor Hybrid Devices for Self-Driving Light-Emitting Diodes 被引量:5
8
作者 Yuliang Yuan Yangdan Lu +10 位作者 BeiEr Jia Haichao Tang Lingxiang Chen YuJia Zeng Yang Hou qinghua zhang Qinggang He Lei Jiao Jianxing Leng Zhizhen Ye Jianguo Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期92-103,共12页
An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device... An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization. 展开更多
关键词 Integrated system NiCo2O4 Battery-supercapacitor hybrid devices SELF-DRIVING LED
下载PDF
Evaluation of the mold-filling ability of alloy melt in squeeze casting 被引量:7
9
作者 Haiying zhang Shuming Xing +2 位作者 qinghua zhang Jianbo Tan Wen Liu 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期60-66,共7页
The mold-filling ability of alloy mclt in squceze casting process was evaluated by means of the maximum length of Archimedes spiral line. A theoretical evaluating model to predict the maximum filling length was built ... The mold-filling ability of alloy mclt in squceze casting process was evaluated by means of the maximum length of Archimedes spiral line. A theoretical evaluating model to predict the maximum filling length was built based on the flowing theory of the incompressible viscous fluid. It was proved by experiments and calculations that the mold-tilling pressure and velocity are prominent influencing factors on the mold-filling ability of alloy melt. The mold-filling ability increases with the increase of the mold-filling pressure and the decrease of the proper mold-filling velocity. Moreover, the pouring temperature relatively has less effect on the mold-filling ability under the experimental conditions. The maximum deviation of theoretical calculating values with experimental results is less than 15%. The model can quantitatively estimate the effect of every factor on the mold-filling ability. 展开更多
关键词 squeeze casting process parameters mold-filling ability theoretical calculation experimental evaluation
下载PDF
Research progress on gel polymer electrolytes for lithium-sulfur batteries 被引量:6
10
作者 Jie Qian Biyu Jin +3 位作者 Yuanyuan Li Xiaoli Zhan Yang Hou qinghua zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期420-437,共18页
Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced s... Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined. 展开更多
关键词 Lithium-sulfur batteries Gel polymer electrolytes Solid hosts Liquid solutions
下载PDF
Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials 被引量:5
11
作者 Siwei Song Yi Wang +2 位作者 Fang Chen Mi Yan qinghua zhang 《Engineering》 SCIE EI 2022年第3期99-109,共11页
Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and... Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and experiments is presented for accelerating the discovery of novel energetic materials.A high-throughput virtual screening(HTVS)system integrating on-demand molecular generation and machine learning models covering the prediction of molecular properties and crystal packing mode scoring is established.With the proposed HTVS system,candidate molecules with promising properties and a desirable crystal packing mode are rapidly targeted from the generated molecular space containing 25112 molecules.Furthermore,a study of the crystal structure and properties shows that the good comprehensive performances of the target molecule are in agreement with the predicted results,thus verifying the effectiveness of the proposed methodology.This work demonstrates a new research paradigm for discovering novel energetic materials and can be extended to other organic materials without manifest obstacles. 展开更多
关键词 Energetic materials Machine learning High-throughput virtual screening Molecular properties Synthesis
下载PDF
Measurement methods of particle size distribution in emulsion polymerization 被引量:4
12
作者 Shuaifeng zhang qinghua zhang +2 位作者 Jianzhuang Shang Zaisha Mao Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期1-15,共15页
The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribut... The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored. 展开更多
关键词 Particle size distribution Emulsion polymerization OFF-LINE ON-LINE IN-LINE
下载PDF
Aluminum impregnated silica catalyst for Friedel–Crafts reaction:Influence of ordering mesostructure 被引量:3
13
作者 Yibo He qinghua zhang +2 位作者 Xiaoli Zhan Dangguo Cheng Fengqiu Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1533-1538,共6页
Friedel–Crafts alkylation of benzene with linear chain ole fin(C_(10)–C_(14)),which is an important reaction of synthetic detergent,was studied via different catalysts of aluminum impregnated silica molecular sieves... Friedel–Crafts alkylation of benzene with linear chain ole fin(C_(10)–C_(14)),which is an important reaction of synthetic detergent,was studied via different catalysts of aluminum impregnated silica molecular sieves.AlCl_3 was immobilized on silica molecular sieves with different channel structures,hexagonal packing channels network(SBA-15,MCM-41),and disordered channel network(SiO_2,SiO_2-Gel) by impregnation.XRD and N_2 adsorption–desorption isotherms con firmed that the speci fic mesoporous structures were maintained for order channel network catalyst after impregnation.Catalytic activities were investigated under different conditions.The in fluences of channel structure were discussed.The results showed that catalyst based on mesoporous like SBA-15 had the highest catalytic activities and 2-LAB selectivity compared with other catalysts in this work.The highest 2-LAB selectivity was nearly 50% when 1-dodecene conversion was nearly 100%.At low 1-dodecene conversion or higher benzene/1-dodecene molar ratio,2-LAB selectivity was nearly 60%. 展开更多
关键词 介孔结构 二氧化硅 渗铝工艺 催化剂 反应 SBA-15 有序 MCM-41
下载PDF
A Superaerophobic Bimetallic Selenides Heterostructure for Efficient Industrial-Level Oxygen Evolution at Ultra-High Current Densities 被引量:4
14
作者 Jiaxin Yuan Xiaodi Cheng +8 位作者 Hanqing Wang Chaojun Lei Sameer Pardiwala Bin Yang Zhongjian Li qinghua zhang Lecheng Lei Shaobin Wang Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第8期213-224,共12页
Cost-effective and stable electrocatalysts with ultra-high current densities for electrochemical oxygen evolution reaction(OER)are critical to the energy crisis and environmental pollution.Herein,we report a superaero... Cost-effective and stable electrocatalysts with ultra-high current densities for electrochemical oxygen evolution reaction(OER)are critical to the energy crisis and environmental pollution.Herein,we report a superaerophobic three dimensional(3D)heterostructured nanowrinkles of bimetallic selenides consisting of crystalline NiSe2 and NiFe2Se4 grown on NiFe alloy(NiSe2/NiFe2Se4@NiFe)prepared by a thermal selenization procedure.In this unique 3D heterostructure,numerous nanowrinkles of NiSe2/NiFe2Se4 hybrid with a thickness of ~100 nm are grown on NiFe alloy in a uniform manner.Profiting by the large active surface area and high electronic conductivity,the superaerophobic NiSe2/NiFe2Se4@NiFe heterostructure exhibits excellent electrocatalytic activity and durability towards OER in alkaline media,outputting the low potentials of 1.53 and 1.54 V to achieve ultra-high current densities of 500 and 1000 mA cm^−2,respectively,which is among the most active Ni/Fe-based selenides,and even superior to the benchmark Ir/C catalyst.The in-situ derived FeOOH and NiOOH species from NiSe2/NiFe2Se4@NiFe are deemed to be efficient active sites for OER. 展开更多
关键词 Superaerophobicity Bimetallic selenide Heterostructure electrocatalyst Strong interfacial coupling Oxygen evolution reaction
下载PDF
Electron-Deficient Zn-N_(6) Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting 被引量:4
15
作者 Daming Zhao Yiqing Wang +6 位作者 Chung-Li Dong Fanqi Meng Yu-Cheng Huang qinghua zhang Lin Gu Lan Liu Shaohua Shen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期602-616,共15页
Despite of suitable band structures for harvesting solar light and driving water redox reactions,polymeric carbon nitride(PCN)has suffered from poor charge transfer ability and sluggish surface reaction kinetics,which... Despite of suitable band structures for harvesting solar light and driving water redox reactions,polymeric carbon nitride(PCN)has suffered from poor charge transfer ability and sluggish surface reaction kinetics,which limit its photocatalytic activity for water splitting.Herein,atomically dispersed Zn-coordinated three-dimensional(3D)sponge-like PCN(Zn-PCN)is synthesized through a novel intermediate coordination strategy.Advanced characterizations and theoretical calculations well evidence that Zn single atoms are coordinated and stabilized on PCN in the form of Zn-N_(6) configura-tion featured with an electron-deficient state.Such an electronic configuration has been demonstrated contributive to promoted electron excitation,accelerated charge separation and transfer as well as reduced water redox barriers.Further benefited from the abundant surface active sites derived from the 3D porous structure,Zn-PCN realizes visible-light photocatalysis for overall water splitting with H_(2) and O_(2) simultaneously evolved at a stoichiometric ratio of 2:1.This work brings new insights into the design of novel single-atom photocatalysts by deepening the understanding of electronic configurations and reactive sites favorable to excellent photocatalysis for water splitting and related solar energy conversion reactions. 展开更多
关键词 Zn single atoms Polymeric carbon nitride Overall water splitting PHOTOCATALYSIS
下载PDF
Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries 被引量:10
16
作者 Kexin zhang Yelong zhang +6 位作者 qinghua zhang Zibin Liang Lin Gu Wenhan Guo Bingjun Zhu Shaojun Guo Ruqiang Zou 《Carbon Energy》 CAS 2020年第2期283-293,共11页
Metal-organic frameworks(MOFs)and MOF-derived materials have attracted great attention as alternatives to noble-metal based electrocatalysts owing to their intriguing structure properties,especially for high efficienc... Metal-organic frameworks(MOFs)and MOF-derived materials have attracted great attention as alternatives to noble-metal based electrocatalysts owing to their intriguing structure properties,especially for high efficiency and stable oxygen reduction reaction(ORR).Herein,we employed a one-pot reaction to make a multimetal(Fe,Co,Cu,and Zn)mixed zeolitic imidazolate framework(MM-ZIF)via adopting a simple in situ redox reaction.Further pyrolysis of the target MM-ZIF,a highly porous carbon polyhedron(FC-C@NC)grafted with abundant carbon nanotubes was obtained,in which ultrasmall Co nanoparticles with partial lattice sites substituted by Fe and Cu were embedded.The obtained FC-C@NC possessed large surface area,highly porous structure,widely-spread metal active sites,and conductive carbon frameworks,contributing to outstanding ORR activity and long-term stability.It displayed superior tolerance to methanol crossover and exceeded the commercial Pt/C catalyst and most previously reported non-noble-metal catalysts.Impressively,the as-produced FC-C@NC-based zinc-air battery afforded an open-circuit potential of 1.466 V,a large specific capacity of 659.5 mAh/g,and a high gravimetric energy density of 784.3 Wh/kgZn,significantly outperforming the Pt/C-based cathode. 展开更多
关键词 ELECTROCATALYSIS lattice sites substitution metal-organic frameworks oxygen reduction reaction zinc-air battery
下载PDF
Synthesis and characterization of caprolactone based polyurethane with degradable and antifouling performance 被引量:2
17
作者 Abid Ali Lina Song +8 位作者 Jiankun Hu Jingxian Jiang Qingqing Rao Muhammad Shoaib Shah Fahad Yongjie Cai Xiaoli Zhan Fengqiu Chen qinghua zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期299-306,共8页
In this work,a degradable polyurethane composed of caprolactone(CL)and L-Lactide(LLA)as soft segments,and 4,40-methylenebis(cyclohexyl isocyanate)(H12 MDI)and polytetramethylene ether glycol(PTMEG)as hard segments,was... In this work,a degradable polyurethane composed of caprolactone(CL)and L-Lactide(LLA)as soft segments,and 4,40-methylenebis(cyclohexyl isocyanate)(H12 MDI)and polytetramethylene ether glycol(PTMEG)as hard segments,was prepared.Hydrolytic degradation experiment revealed that the degradable polyurethane(PU)could be degraded in artificial seawater.It also showed that caprolactone-copolyurethane(CL-PU)copolymer with higher crystallinity degraded much slower in artificial seawater.However,the introduction of LLA resulted in an increase in the hydrophilicity and reduction in the crystallinity of degradable PU,as demonstrated by the contact angle analysis.The result of the scanning electron microscope showed that the surface of degradable PU renewed under static condition.Moreover,degradable PU was able to be used as a carrier,and it controlled the release rate of 4,5-dichloro-2-octyl-isothiazolone(DCOIT).The anti-diatom(Navicula incerta)test demonstrated that the(caprolactone-co-L-lactide)-co-polyurethane 4(CL/LAx-PU4)with DCOIT contents prevented the adhesion of diatom Navicula incerta(88.37%reduction)due to their self-polishing and the release of antifoulants.Therefore,the degradable PU consisted of CL,LLA,and DCOIT could be a durable resin with good antifouling activity for the application in the marine anti-biofouling field. 展开更多
关键词 ANTIFOULANT 4 5-dicholoro-2-octyl-isothiazolone Degradable polyurethane L-LACTIDE CAPROLACTONE
下载PDF
CFD simulation of flow and mixing characteristics in a stirred tank agitated by improved disc turbines 被引量:2
18
作者 Zhuotai Jia Lele Xu +3 位作者 Xiaoxia Duan Zai-Sha Mao qinghua zhang Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第10期95-107,共13页
To reduce the power consumption and improve the mixing performance in stirred tanks,two improved disc turbines namely swept-back parabolic disc turbine(SPDT)and staggered fan-shaped parabolic disc turbine(SFPDT)are de... To reduce the power consumption and improve the mixing performance in stirred tanks,two improved disc turbines namely swept-back parabolic disc turbine(SPDT)and staggered fan-shaped parabolic disc turbine(SFPDT)are developed.After validation of computational fluid dynamics(CFD)model with experimental results,CFD simulations are carried out to study the flow pattern,mean velocity,power consumption,pumping capacity and mixing efficiency of the improved and traditional impellers in a dished-bottom tank under turbulent flow conditions,The results indicate that compared with the commonly used parabolic disc turbine(PDT),the power number of proposed SPDT and SFPDT impellers is reduced by 43%and 12%,and the pumping efficiency is increased by 68%and 13%,respectively.Furthermore,under the same power consumption(0-700 W·m^(-3)),the mixing performance of both SPDT and SFPDT is also superior to that of Rushton turbine and PDT. 展开更多
关键词 Flow regime Mixing time Stirred vessel Computational fluiddynamics Improved discturbine
下载PDF
A Universal Principle to Accurately Synthesize Atomically Dispersed Metal–N_4 Sites for CO_2 Electroreduction 被引量:2
19
作者 Wanzhen Zheng Feng Chen +7 位作者 Qi Zeng Zhongjian Li Bin Yang Lecheng Lei qinghua zhang Feng He Xilin Wu Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期14-25,共12页
Atomically dispersed metal-nitrogen sites-anchored carbon materials have been developed as effective catalysts for CO2 electroreduction(CO2 ER),but they still suffer from the imprecisely control of type and coordinati... Atomically dispersed metal-nitrogen sites-anchored carbon materials have been developed as effective catalysts for CO2 electroreduction(CO2 ER),but they still suffer from the imprecisely control of type and coordination number of N atoms bonded with central metal.Herein,we develop a family of single metal atom bonded by N atoms anchored on carbons(SAs-M-N-C,M=Fe,Co,Ni,Cu)for CO2 ER,which composed of accurate pyrrole-type M-N4 structures with isolated metal atom coordinated by four pyrrolic N atoms.Benefitting from atomically coordinated environment and specific selectivity of M-N4 centers,SAs-Ni-N-C exhibits superior CO2 ER performance with onset potential of-0.3 V,CO Faradaic efficiency(F.E.) of 98.5%at-0.7 V,along with low Tafel slope of 115 mV dec-1 and superior stability of 50 h,exceeding all the previously reported M-N-C electrocatalysts for CO2-to-CO conversion.Experimental results manifest that the different intrinsic activities of M-N4 structures in SAs-M-N-C result in the corresponding sequence of Ni> Fe> Cu> Co for CO2 ER performance.An integrated Zn-CO2 battery with Zn foil and SAs-Ni-N-C is constructed to simultaneously achieve CO2-to-CO conversion and electric energy output,which delivers a peak power density of 1.4 mW cm-2 and maximum CO F.E.of 93.3%. 展开更多
关键词 Atomic dispersion Pyrrole-type metal–N4 structure Catalytic site CO2 electroreduction Zn–CO2 battery
下载PDF
Degradation data-driven approach for remaining useful life estimation 被引量:2
20
作者 Zhiliang Fan Guangbin Liu +2 位作者 Xiaosheng Si Qi zhang qinghua zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期173-182,共10页
Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL es... Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL estimation approach under the collaboration between Bayesian updating and expectation maximization (EM) algorithm. Firstly, we utilize an exponential-like degradation model to describe equipment degradation process and update stochastic parameters in the model via Bayesian approach. Based on the Bayesian updating results, both probability distribution of the RUL and its point estimation can be derived. Secondly, based on the monitored degradation data to date, we give a parameter estimation approach for non-stochastic parameters in the degradation model and prove that the obtained estimation is unique and optimal in each iteration. Finally, a numerical example and a practical case study for global positioning system (GPS) receiver are provided to show that the presented approach can model degradation process and achieve RUL estimation effectively and generate better results than a previously reported approach in literature. 展开更多
关键词 RELIABILITY DEGRADATION remaining useful life (RUL) prognostics global positioning system (GPS).
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部