Double-atom catalysts(DACs)have emerged as an enhanced platform of single-atom catalyst for promoting electrocatalytic CO_(2) reduction reaction(CO_(2) RR).Herein,we present a density-functional theory study on CO_(2)...Double-atom catalysts(DACs)have emerged as an enhanced platform of single-atom catalyst for promoting electrocatalytic CO_(2) reduction reaction(CO_(2) RR).Herein,we present a density-functional theory study on CO_(2) RR performance of seven C_(2) N-supported homo-and heteronuclear DACs,denoted as M_(2)@C_(2) N.Our results demonstrate that there exists substantial synergistic effect of dual-metal-atom N_(2) M_(2) N_(2) active site and C_(2) N matrix on O=C=O bond activation.The dual-atom M_(2) sites are able to drive CO_(2) RR beyond C1 products with low limiting potential(UL).Specifically,C_(2) H4 formation is preferred on FeM@C_(2) N(M=Fe,Co,Ni,Cu)versus CH4 formation on CuM@C_(2) N(M=Co,Ni,Cu).Furthermore,^(*)CO+^(*)CO cobinding strength can serve as a descriptor for CO_(2) RR activity for making C_(2) products such that the moderate binding results in the lowest UL.Remarkably,C-affinity matters most to C-C bond coupling and C_(2) H4 formation while both C-and O-affinity control CH4 formation.Our results provide theoretical insight into rational design of DACs for efficient CO_(2) RR.展开更多
基金supported by the National Natural Science Foundation of China(21673137)the Science and Technology Commission of Shanghai Municipality(16ZR1413900,18030501100)+1 种基金the support from the Program for Top Talents in Songjiang District of Shanghaithe support from the Talent Program of Shanghai University of Engineering Science。
文摘Double-atom catalysts(DACs)have emerged as an enhanced platform of single-atom catalyst for promoting electrocatalytic CO_(2) reduction reaction(CO_(2) RR).Herein,we present a density-functional theory study on CO_(2) RR performance of seven C_(2) N-supported homo-and heteronuclear DACs,denoted as M_(2)@C_(2) N.Our results demonstrate that there exists substantial synergistic effect of dual-metal-atom N_(2) M_(2) N_(2) active site and C_(2) N matrix on O=C=O bond activation.The dual-atom M_(2) sites are able to drive CO_(2) RR beyond C1 products with low limiting potential(UL).Specifically,C_(2) H4 formation is preferred on FeM@C_(2) N(M=Fe,Co,Ni,Cu)versus CH4 formation on CuM@C_(2) N(M=Co,Ni,Cu).Furthermore,^(*)CO+^(*)CO cobinding strength can serve as a descriptor for CO_(2) RR activity for making C_(2) products such that the moderate binding results in the lowest UL.Remarkably,C-affinity matters most to C-C bond coupling and C_(2) H4 formation while both C-and O-affinity control CH4 formation.Our results provide theoretical insight into rational design of DACs for efficient CO_(2) RR.