期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
An Efficient Process for Recycling Nd-Fe-B Sludge as High-Performance Sintered Magnets
1
作者 Xiaowen Yin Ming Yue +8 位作者 qingmei lu Min Liu Feng Wang Yubing Qiu Weiqiang Liu Tieyong Zuo Shanshun Zha Xuliang Li Xiaofei Yi 《Engineering》 SCIE EI 2020年第2期165-172,共8页
Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for ... Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium-iron-boron(Nd-Fe-B)sintered magnets.In the present study,centerless grinding sludge from the Nd-Fe-B sintered magnet machining process was selected as the starting material.The sludge was subjected to a reduction-diffusion(RD)process in order to synthesize recycled neodymium magnet(Nd2Fe14B)powder;during this process,most of the valuable elements,including neodymium(Nd),praseodymium(Pr),gadolinium(Gd),dysprosium(Dy),holmium(Ho),and cobalt(Co),were recovered simultaneously.Calcium chloride(CaCl2)powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency.The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio.It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio(calcium/sludge)and reaction temperature were 40 wt% and 1050℃,respectively.The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd-Fe-B sintered magnets with a remanence of 12.1 kG(1 G=1×10^-4T),and a coercivity of 14.6 kOe(1 Oe=79.6A·m^-1),resulting in an energy product of 34.5 MGOe.This recycling route promises a great advantage in recycling efficiency as well as in cost. 展开更多
关键词 ND-FE-B GRINDING SLUDGE Recycled sintered MAGNETS Calcium reduction-diffusion Rare-earth-rich alloy doping
下载PDF
Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
2
作者 杨质 陈源源 +7 位作者 刘卫强 李玉卿 丛利颖 吴琼 张红国 路清梅 张东涛 岳明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期646-651,共6页
Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materia... Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materials with impurities and inhomogeneities exhibit complex magnetization behavior.Here we investigate the effects of size,volume fraction,and surroundings of inhomogeneities on the magnetic properties of an inhomogeneous magnetic material via micromagnetic simulations.The underlying magnetization reversal and coercivity mechanisms are revealed.Three different demagnetization characteristics corresponding to the exchange coupling phase,semi-coupled phase,and decoupled phase are found,depending on the size of inhomogeneities.In addition,the increase in the size of inhomogeneities leads to a transition of the coercivity mechanism from nucleation to pinning.This work could be useful for optimizing the magnetic properties of both exchange-coupled nanomagnets and inhomogeneous single-phase magnets. 展开更多
关键词 permanent magnets micromagnetic simulation EXCHANGE-COUPLING MULTILAYERS
下载PDF
Progress in recycling of Nd–Fe–B sintered magnet wastes 被引量:2
3
作者 岳明 尹小文 +1 位作者 刘卫强 路清梅 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期14-24,共11页
Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resourc... Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resources.There are two major facts behind the efforts.First, the waste magnets contain total rare-earth content as high as more than 30 wt.%, which is higher than most natural rare-earth mines.Second, the waste magnets maintain the physical and chemical properties of the original magnets even with deterioration of the properties on surfaces due to corrosion and contamination.In this review,various techniques for recycling bulk Nd–Fe–B sintered magnet wastes, the overall properties of the recycled Nd–Fe–B sintered magnets, and the mass production of recycled magnets from the wastes are reviewed. 展开更多
关键词 Nd–Fe–B sintered MAGNET RARE-EARTH resource RECYCLING
下载PDF
Microstructure evolution of hot-deformed SmCo-based nanocomposites induced by thermo-mechanical processing 被引量:1
4
作者 Yuan Teng Yuqing Li +6 位作者 Xiaochang Xu Ming Yue Weiqiang Liu Dongtao Zhang Hongguo Zhang qingmei lu Weixing Xia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第7期193-202,共10页
Nanocomposite permanent magnets have ultra-high theoretical magnetic energy products,due to cou-pling of the soft/hard magnetic phases,inciting strict microstructural requirements.In this study,the microstructure evol... Nanocomposite permanent magnets have ultra-high theoretical magnetic energy products,due to cou-pling of the soft/hard magnetic phases,inciting strict microstructural requirements.In this study,the microstructure evolution,including the phase transition,morphological changes,and texture formation,of hot-deformed SmCo-based nanocomposites under thermal-stress-strain coupling was characterized to determine a possible strategy for achieving high performance.The SmCo_(5)/α-Fe nanocomposites precursor contained fine and dispersed Sm(Fe,Co)_(5)and Fe-Co grains and exhibited a two-stage phase transforma-tion accompanied by grain growth.In the early stage of deformation at relatively low temperature,the adjacent Sm(Co,Fe)5 and Fe-Co phase formed the Sm_(2)(Co,Fe)_(17)-H phase,which was stable only with small grain sizes.In the high-temperature deformation stage,the Sm_(2)(Co,Fe)_(17)-H phase transformed into the Sm_(2)(Co,Fe)_(17)-R phase with large grain sizes.In addition,the strong c-axis texture formed in the Sm(Co,Fe)_(5)phase but not in the Sm_(2)(Co,Fe)_(17)-R phase.Subsequently,the phase transition process and texture formation mechanism were systematically analyzed by transmission electron microscopy.The ini-tiation of a slip system and/or preferential grain growth explained the formation of texture under the action of uniform stress and strain and assisted by dispersed Sm-rich nanograins.The Sm_(2)(Co,Fe)_(17)-R grains with poor orientations and large grain sizes did not achieve magnetic hardening,which also dam-age the magnetic properties.According to the results of this work,we also presented a new strategy to prepare high-performance SmCo-based nanocomposites magnets. 展开更多
关键词 NANOCOMPOSITES Phase transition Microstructure C-axis texture Hot deformation
原文传递
A facile process to optimize performance of regenerated Nd-Fe-B sintered magnets:Chemo-selective dissolution washing
5
作者 Haibo Xu qingmei lu +9 位作者 Lichao Yu Liying Cong Haowen Tian Weiqiang Liu Youhao Liu Yunqiao Wang Jingwu Chen Xiaofei Yi Qiong Wu Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第12期1976-1983,I0006,共9页
In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-... In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively. 展开更多
关键词 Recycling Nd-Fe-B magnet Sludge Chemo-selective dissolution Washing process Magnetic properties Reduction diffusion Rare earths
原文传递
Short-process recycling of Nd-Fe-B sintered magnet sludge wastes:Challenges and approaches
6
作者 Liying Cong Lichao Yu +2 位作者 Quangui Zhou qingmei lu Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第10期1467-1477,I0001,共12页
Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is ... Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is crucial to the sustainable rare-earth industry.However,the current multistage wet process recycling technique for the sludge wastes involves high fabrication cost,excessive energy consumption,and heavy environmental burden.Therefore,short-process recycling techniques for Nd-Fe-B sintered magnet wastes have drawn increasing attention in the past decades.In this paper,we review recent efforts into short-process recycling Nd-Fe-B sintered magnet sludge wastes with emphasis on in-situ recycling techniques. 展开更多
关键词 Nd-Fe-B sintered Magnet sludge wastes Rare earths Short-process recycling In-situ recycling
原文传递
Calcium hydride reduced high-quality Nd-Fe-B powder from Nd-Fe-B sintered magnet sludge 被引量:1
7
作者 Haibo Xu qingmei lu +7 位作者 Liying Cong Haowen Tian Weiqiang Liu Youhao Liu Yunqiao Wang Jingwu chen Xiaofei Yi Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1905-1912,I0004,共9页
The structural and magnetic properties were studied for recycling Nd-Fe-B powders from Nd-Fe-B sintered magnets sludge via reduction diffusion(RD)with calcium hydride(CaH_(2))particles.For comparison,traditional reduc... The structural and magnetic properties were studied for recycling Nd-Fe-B powders from Nd-Fe-B sintered magnets sludge via reduction diffusion(RD)with calcium hydride(CaH_(2))particles.For comparison,traditional reducing agent calcium granules were applied to prepare recycled Nd-Fe-B powders.Finer particle size and better size distribution as well as lower impurity content are achieved by using CaH_(2)instead of Ca.In detail,the average particle size of the recycled Nd-Fe-B powder is reduced from 4.66 to 3.43μm,and the bimodal distribution disappears.Moreover,the residual calcium content and oxygen content are reduced to about 0.080 wt%and 0.32 wt%.As a consequence,the roomtemperature magnetization of the CaH_(2)-recycled Nd-Fe-B powder is increased to 146.30 emu/g,6.8%and 33%,respectively,higher than that of Ca-reduced powder and the initial sludge.Further analysis indicates that CaH_(2)is able to reduce the sludge at lower tempe rature to fabricate well-dispersed,unifo rm recycled powder with high magnetization arising from a combination factors of its low melting point,low thermodynamic behavior,and the release of hydrogen during the reaction. 展开更多
关键词 Recycled Nd-Fe-B powders Magnetic properties Microstructure Reducing agent Reduction diffusion Rare earths
原文传递
Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution 被引量:1
8
作者 Yuyang Tang Yuqing Li +5 位作者 Xiaochang Xu Ming Yue Weiqiang Liu Hongguo Zhang qingmei lu Weixing Xia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期28-35,共8页
In this paper, microstructure, micromagnetic structure, texture, together with magnetic properties of the hot-deformed(HD) Nd-Fe-B magnets were systematically studied to understand the deformation process and the form... In this paper, microstructure, micromagnetic structure, texture, together with magnetic properties of the hot-deformed(HD) Nd-Fe-B magnets were systematically studied to understand the deformation process and the formation mechanism of c-axis texture. The results show that the platelet grains are formed in the fine-grain regions at the initial stage of the deformation. As the amount of deformation increases, the proportion of platelet grains increases and arranges gradually, causing the formation of c-axis texture, till the grain merging occurres when the deformation is excessive. It should be noted that the rare earth-rich phase in the fine-grained region slowly diffuses to the coarse-grained region where only grain growth can be observed during deformation. The deformation mechanism and formation of c-axis texture in HD Nd-Fe-B magnets can be deduced to be accomplished by the processes of dissolution-precipitation diffusion, grain rotation and grain arrangement, based on the characterization of microstructure and texture evolution. Also, approaches to optimize the preparation process and magnetic properties of the hot-deformed Nd-Fe-B magnets were discussed. 展开更多
关键词 Hot-deformed Nd-Fe-B magnet Heterogeneous microstructure Deformation mechanism C-axis texture COERCIVITY
原文传递
Magnetic property recovery in Nd-Fe-B bonded magnet wastes with chemical reaction and physical dissolution
9
作者 Min Liu Haiyuan Cui +11 位作者 Qingyan Li Peihong Zhu Weiqiang Liu qingmei lu Dongtao Zhang Zaisheng Pang Xi Yu Chunhui Yu Shanshun Zha Youhao Liu Xiaofei Yi Ming Yue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第11期1396-1401,I0003,共7页
The main difficulty for the recovery of Nd-Fe-B bonded magnet wastes is how to completely remove the epoxy resins.In this study,chemical reaction and physical dissolution were combined to remove the epoxy resins by ad... The main difficulty for the recovery of Nd-Fe-B bonded magnet wastes is how to completely remove the epoxy resins.In this study,chemical reaction and physical dissolution were combined to remove the epoxy resins by adding ammonia-water and mixed organic solvents.Ammonia-water can react with the epoxy functional group of epoxy resin to generate polyols.Mixed organic solvents of alcohol,dimethyl formamide(DMF),and tetrahydrofuran(THF) can dissolve the generated polyols and residual epoxy resins.Under the optimum processing conditions,the epoxy resins in the waste magnetic powders are substantially removed.The oxygen and carbon contents in the recycled magnetic powder are reduced from 13500 × 10^(-6) to 1600 × 10^(-6) and from 19500 × 10^(-6) to 2100 × 10^(-6) with the reduction ratio of88.1% and 89.2%,respectively.The recycled magnetic powder presents improved magnetic properties with MS of 1.306 × 10^(-1) A·m^(2)/g,Mr of 0.926 × 10^(-1) A·m^(2)/g,Hcj of 1.170 T,and(BH)max of 125.732 kJ/m^(3),which reach 99.8%,99.4%,95.9%,and 96.9% of the original magnetic powders,respectively. 展开更多
关键词 Nd-Fe-B bonded magnet wastes Epoxy resin Open-loop reaction Physical dissolution Recycled magnetic powders Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部