We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footpr...We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm^2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber(MCF) and coupled into the chip with a local oscillator(LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarizationcontrol function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.展开更多
We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refra...We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.展开更多
Mode-and polarization-division multiplexing offer new dimensions to increase the transmission capacity of optical communications. Selective switches are key components in reconfigurable optical network nodes. An on-ch...Mode-and polarization-division multiplexing offer new dimensions to increase the transmission capacity of optical communications. Selective switches are key components in reconfigurable optical network nodes. An on-chip silicon 2 × 2 mode-and polarization-selective switch that can route four data channels on two modes and two polarizations simultaneously is proposed and experimentally demonstrated for the first time, to the best of our knowledge. The overall insertion losses are lower than 8.6 d B. To reduce the inter-modal crosstalk, polarization beam splitters are added to filter the undesired polarizations or modes. The measured inter-modal andintra-modal crosstalk values are below-23.2 and-22.8 d B for all the channels, respectively.展开更多
Mode-and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications.On-chip silicon polarization and mode handling devices are key components in integr...Mode-and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications.On-chip silicon polarization and mode handling devices are key components in integrated mode-and polarization-division multi-plexed photonic circuits.In this paper,we review our recent progresses on silicon-based polarization beam splitters,polarization splitters and rotators,mode(de)multiplexers,and mode and polarization selective switches.Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio,compact footprint and high fabrication tolerance.For on-chip mode multiplexing,we introduce a low loss and fabrication tolerant three-mode(de)multiplexer employing sub-wavelength grating structure.In analogy to a conventional wavelength selective switch in wavelength-division multi-plexing,we demonstrate a selective switch that can route mode-and polarization-multiplexed signals.展开更多
基金supported by the National Key R&D Pro-gram of China under Grant 2016YFB0402501in part by the Natural Science Foundation of China under grant 61605112Open Fund of IPOC under grant BUPT
文摘We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm^2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber(MCF) and coupled into the chip with a local oscillator(LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarizationcontrol function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.
基金National Natural Science Foundation of China(NSFC)(61235007,61505104,61605112)Science and Technology Commission of Shanghai Municipality(15ZR1422800,16XD1401400)National Key R&D Program of China(2016YFB0402501)
文摘We propose and experimentally demonstrate a 2×2 thermo-optic(TO) crossbar switch implemented by dual photonic crystal nanobeam(PCN)cavities within a silicon-on-insulator(SOI)platform.By thermally tuning the refractive index of silicon,the resonance wavelength of the PCN cavities can be red-shifted.With the help of the ultrasmall mode volumes of the PCN cavities,only~0.16 mW power is needed to change the switching state.With a spectral passband of 0.09 nm at the 1583.75 nm operation wavelength,the insertion loss(IL)and crosstalk(CT)performances were measured as IL(bar)=-0.2 dB,CT(bar)=-15 dB,IL(cross)=-1.5 dB,and CT(cross)=-15 dB.Furthermore,the thermal tuning efficiency of the fabricated device is as high as1.23 nm/mW.
基金National Natural Science Foundation of China(NSFC)(61235007,61505104,61605112)863 High-Tech Program(2015AA017001)Science and Technology Commission of Shanghai Municipality(STCSM)(15ZR1422800,16XD1401400)
文摘Mode-and polarization-division multiplexing offer new dimensions to increase the transmission capacity of optical communications. Selective switches are key components in reconfigurable optical network nodes. An on-chip silicon 2 × 2 mode-and polarization-selective switch that can route four data channels on two modes and two polarizations simultaneously is proposed and experimentally demonstrated for the first time, to the best of our knowledge. The overall insertion losses are lower than 8.6 d B. To reduce the inter-modal crosstalk, polarization beam splitters are added to filter the undesired polarizations or modes. The measured inter-modal andintra-modal crosstalk values are below-23.2 and-22.8 d B for all the channels, respectively.
基金We thank Prof. Richard Soref, Prof. Xiaoqing Jiang, Prof. Jianyi Yang, and Prof. Christine Tremblay et al. for their helpful discussion and contributions. This work was supported in part by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61605112, 61235007, 61505104), in part by the 863 High-Tech Program (No. 2015AA017001), and in part by the Science and Technology Commission of Shanghai Municipality (Nos. 15ZR1422800, 16XD1401400). We thank the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University for the support in device fabrications.
文摘Mode-and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications.On-chip silicon polarization and mode handling devices are key components in integrated mode-and polarization-division multi-plexed photonic circuits.In this paper,we review our recent progresses on silicon-based polarization beam splitters,polarization splitters and rotators,mode(de)multiplexers,and mode and polarization selective switches.Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio,compact footprint and high fabrication tolerance.For on-chip mode multiplexing,we introduce a low loss and fabrication tolerant three-mode(de)multiplexer employing sub-wavelength grating structure.In analogy to a conventional wavelength selective switch in wavelength-division multi-plexing,we demonstrate a selective switch that can route mode-and polarization-multiplexed signals.