The unique hot carrier-driven direct plasmonic photocatalysis of coinage metal nanomaterials(NMs)via energetic localized surface plasmon resonance(LSPR)in visible-light region has been explored in recent years.However...The unique hot carrier-driven direct plasmonic photocatalysis of coinage metal nanomaterials(NMs)via energetic localized surface plasmon resonance(LSPR)in visible-light region has been explored in recent years.However,the low photoinduced electron transfer efficiency and insufficient separation of electronhole pairs would severely preclude their widespread practical applications.Herein,we demonstrate an interesting plasmonic photocatalyst based on the construction of icosahedral(Ih)Au@C_(60) core-shell NMs,taking advantage of specific delocalizedπelectrons structure of a tight C_(60) shell and enhanced LSPR property of Ih Au core.Then,the pronounced interfacial interaction at junction region endows the obtained Au@C_(60) NMs with an outstanding photoinduced hot carrier-transmission during photocatalytic reaction,facilitating a remarkably higher(1.89 times)photocatalytic activity toward visible-light driven degradation of crystal violet(CV)dyes,as compared to bare Au NMs.Impressively,the photocatalytic activity of Ih Au@C_(60) NMs can be effectively optimized by changing the p H value of reaction solution,with the kinetic rate constant reaching the maximum value of 0.179 min^(-1) in pH011.4 solution,while 0.005 min^(-1) at pH03.0.Moreover,due to the protection of a tight C_(60) shell,the Ih Au@C_(60) NMs also possess excellent photocatalytic stability/reusability in recycling runs,holding great potential for the design of robust and high-performance plasmonic photocatalysts in repeated practical applications.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(Nos.11905115,11575102)the Shandong Jianzhu University XNBS Foundation(No.1608)the Fundamental Research Fund of Shandong University(No.2018JC022)。
文摘The unique hot carrier-driven direct plasmonic photocatalysis of coinage metal nanomaterials(NMs)via energetic localized surface plasmon resonance(LSPR)in visible-light region has been explored in recent years.However,the low photoinduced electron transfer efficiency and insufficient separation of electronhole pairs would severely preclude their widespread practical applications.Herein,we demonstrate an interesting plasmonic photocatalyst based on the construction of icosahedral(Ih)Au@C_(60) core-shell NMs,taking advantage of specific delocalizedπelectrons structure of a tight C_(60) shell and enhanced LSPR property of Ih Au core.Then,the pronounced interfacial interaction at junction region endows the obtained Au@C_(60) NMs with an outstanding photoinduced hot carrier-transmission during photocatalytic reaction,facilitating a remarkably higher(1.89 times)photocatalytic activity toward visible-light driven degradation of crystal violet(CV)dyes,as compared to bare Au NMs.Impressively,the photocatalytic activity of Ih Au@C_(60) NMs can be effectively optimized by changing the p H value of reaction solution,with the kinetic rate constant reaching the maximum value of 0.179 min^(-1) in pH011.4 solution,while 0.005 min^(-1) at pH03.0.Moreover,due to the protection of a tight C_(60) shell,the Ih Au@C_(60) NMs also possess excellent photocatalytic stability/reusability in recycling runs,holding great potential for the design of robust and high-performance plasmonic photocatalysts in repeated practical applications.